Suppr超能文献

沿基于现实弥散张量成像的神经轨迹的有效电场,用于模拟经颅磁刺激的刺激机制。

Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS.

作者信息

De Geeter N, Crevecoeur G, Leemans A, Dupré L

机构信息

Department of Electrical Energy, Systems and Automation, Ghent University, Technologiepark 913, 9052 Zwijnaarde, Belgium.

出版信息

Phys Med Biol. 2015 Jan 21;60(2):453-71. doi: 10.1088/0031-9155/60/2/453. Epub 2014 Dec 30.

Abstract

In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron's local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract's position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values.

摘要

在经颅磁刺激(TMS)中,施加的交变磁场会在大脑中感应出一个电场,该电场可与神经系统相互作用。一般认为,这种感应电场是刺激大脑特定区域的关键效应。更具体地说,是该电场中与神经元局部方向平行的分量,即所谓的有效电场,能够引发神经元刺激。通过广泛的TMS建模可以获得对刺激机制更深入的见解。大多数模型研究具有假定几何形状的神经元的简单表示,而我们则嵌入了使用基于扩散张量图像的纤维束成像计算出的真实神经轨迹。这种建模方式确保了有效电场更准确的空间分布,而且该分布是针对患者和具体病例的。本文的案例研究聚焦于使用标准的8字形线圈对左侧初级运动皮层进行单脉冲刺激。在模型中纳入真实的神经几何形状,展示了由于诸如纤维束相对于TMS线圈的位置和方向、神经轨迹及其沿白质和灰质界面的走向等因素的相互作用,纤维束自身之间以及沿纤维束方向有效电场的强烈且局部的变化。此外,还研究了线圈方向变化的影响。研究组织各向异性的影响证实其贡献不可忽略。而且,假设组织为各向同性会导致与将线圈旋转或倾斜10度时相同大小的误差。相比之下,该模型对不太知名的组织电导率值不太敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验