Suppr超能文献

化学喷雾热解法制备低成本等离子体太阳能电池。

Low-cost plasmonic solar cells prepared by chemical spray pyrolysis.

机构信息

Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.

Chair of Semiconductor Materials Technology, Department of Materials Science Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.

出版信息

Beilstein J Nanotechnol. 2014 Dec 12;5:2398-402. doi: 10.3762/bjnano.5.249. eCollection 2014.

Abstract

Solar cells consisting of an extremely thin In2S3/CuInS2 buffer/absorber layer uniformly covering planar ZnO were prepared entirely by chemical spray pyrolysis. Au nanoparticles (Au-NPs) were formed via thermal decomposition of a gold(III) chloride trihydrate (HAuCl4·3H2O) precursor by spraying 2 mmol/L of the aqueous precursor solution onto a substrate held at 260 °C. Current-voltage scans and external quantum efficiency spectra were used to evaluate the solar cell performance. This work investigates the effect of the location of the Au-NP layer deposition (front side vs rear side) in the solar cell and the effect of varying the volume (2.5-10 mL) of the sprayed Au precursor solution. A 63% increase (from 4.6 to 7.5 mA/cm(2)) of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell.

摘要

采用化学喷雾热解法,完全制备了由极薄的 In2S3/CuInS2 缓冲/吸收层均匀覆盖平面 ZnO 的太阳能电池。通过将 2 mmol/L 的水相前驱体溶液喷涂到保持在 260°C 的基底上,热分解三氯金酸三水合物 (HAuCl4·3H2O) 前体制备了金纳米粒子 (Au-NPs)。采用电流-电压扫描和外量子效率谱来评估太阳能电池的性能。这项工作研究了 Au-NP 层沉积位置(前侧与后侧)在太阳能电池中的影响,以及改变喷涂 Au 前体溶液体积(2.5-10 mL)的影响。当将 2.5 mL 的前驱体溶液沉积到太阳能电池的后侧时,短路电流密度增加了 63%(从 4.6 增加到 7.5 mA/cm(2))。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4f/4273276/3dfd7be65156/Beilstein_J_Nanotechnol-05-2398-g002.jpg

相似文献

1
Low-cost plasmonic solar cells prepared by chemical spray pyrolysis.
Beilstein J Nanotechnol. 2014 Dec 12;5:2398-402. doi: 10.3762/bjnano.5.249. eCollection 2014.
2
Modification of light absorption in thin CuInS2 films by sprayed Au nanoparticles.
Nanoscale Res Lett. 2014 Dec;9(1):2469. doi: 10.1186/1556-276X-9-494. Epub 2014 Sep 14.
3
Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells.
Nanoscale. 2014 Sep 21;6(18):10772-8. doi: 10.1039/c4nr03270e. Epub 2014 Aug 7.
4
SbS grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell.
Beilstein J Nanotechnol. 2016 Nov 10;7:1662-1673. doi: 10.3762/bjnano.7.158. eCollection 2016.
5
Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study.
Materials (Basel). 2018 Sep 5;11(9):1626. doi: 10.3390/ma11091626.
7
SbS Thin-Film Solar Cells Fabricated from an Antimony Ethyl Xanthate Based Precursor in Air.
ACS Appl Mater Interfaces. 2023 Sep 13;15(36):42622-42636. doi: 10.1021/acsami.3c08547. Epub 2023 Aug 28.
10
External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles.
Nanoscale Res Lett. 2014 Sep 11;9(1):483. doi: 10.1186/1556-276X-9-483. eCollection 2014.

本文引用的文献

1
Modification of light absorption in thin CuInS2 films by sprayed Au nanoparticles.
Nanoscale Res Lett. 2014 Dec;9(1):2469. doi: 10.1186/1556-276X-9-494. Epub 2014 Sep 14.
3
Plasmonic polymer tandem solar cell.
ACS Nano. 2011 Aug 23;5(8):6210-7. doi: 10.1021/nn202144b. Epub 2011 Jul 18.
4
Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles.
Nano Lett. 2011 Feb 9;11(2):438-45. doi: 10.1021/nl1031106. Epub 2010 Dec 31.
5
Design considerations for plasmonic photovoltaics.
Adv Mater. 2010 Nov 16;22(43):4794-808. doi: 10.1002/adma.201000488.
6
Light trapping in ultrathin plasmonic solar cells.
Opt Express. 2010 Jun 21;18 Suppl 2:A237-45. doi: 10.1364/OE.18.00A237.
7
Plasmonic solar cells.
Opt Express. 2008 Dec 22;16(26):21793-800. doi: 10.1364/oe.16.021793.
8
Optical properties of metallic films for vertical-cavity optoelectronic devices.
Appl Opt. 1998 Aug 1;37(22):5271-83. doi: 10.1364/ao.37.005271.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验