Lamb Audrey L, Kappock T Joseph, Silvaggi Nicholas R
Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, United States.
Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States.
Biochim Biophys Acta. 2015 Apr;1854(4):258-68. doi: 10.1016/j.bbapap.2014.12.021. Epub 2014 Dec 29.
X-ray crystal structures propel biochemistry research like no other experimental method, since they answer many questions directly and inspire new hypotheses. Unfortunately, many users of crystallographic models mistake them for actual experimental data. Crystallographic models are interpretations, several steps removed from the experimental measurements, making it difficult for nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on "global" measures of data and model quality to build models. Robust validation procedures based on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely correct. However, global measures do not allow users of crystallographic models to judge the reliability of "local" features in a region of interest. Refinement of a model to fit into an electron density map requires interpretation of the data to produce a single "best" overall model. This process requires inclusion of most probable conformations in areas of poor density. Users who misunderstand this can be misled, especially in regions of the structure that are mobile, including active sites, surface residues, and especially ligands. This article aims to equip users of macromolecular models with tools to critically assess local model quality. Structure users should always check the agreement of the electron density map and the derived model in all areas of interest, even if the global statistics are good. We provide illustrated examples of interpreted electron density as a guide for those unaccustomed to viewing electron density.
X射线晶体结构对生物化学研究的推动作用是其他实验方法无法比拟的,因为它们能直接回答许多问题并激发新的假设。不幸的是,许多晶体学模型的使用者将其误认为是实际的实验数据。晶体学模型是一种解释,与实验测量相隔几个步骤,这使得非专业人员难以评估基础数据的质量。晶体学家主要依靠数据和模型质量的“全局”度量来构建模型。基于全局度量的稳健验证程序现在在很大程度上确保了蛋白质数据库(PDB)中的结构基本正确。然而,全局度量不允许晶体学模型的使用者判断感兴趣区域中“局部”特征的可靠性。将模型精修以拟合电子密度图需要对数据进行解释以生成单个“最佳”整体模型。这个过程需要在密度较差的区域纳入最可能的构象。误解这一点的使用者可能会被误导,尤其是在结构中可移动的区域,包括活性位点、表面残基,特别是配体。本文旨在为大分子模型的使用者提供批判性评估局部模型质量的工具。结构使用者应始终检查感兴趣的所有区域中电子密度图与推导模型的一致性,即使全局统计数据良好。我们提供了解释后的电子密度的示例图,作为那些不习惯查看电子密度的人的指南。