Suppr超能文献

菌丝体作为网络。

The Mycelium as a Network.

机构信息

Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom.

Mathematics Department, Imperial College, Queen's Gate, London SW7 2AZ, United Kingdom.

出版信息

Microbiol Spectr. 2017 May;5(3). doi: 10.1128/microbiolspec.FUNK-0033-2017.

Abstract

The characteristic growth pattern of fungal mycelia as an interconnected network has a major impact on how cellular events operating on a micron scale affect colony behavior at an ecological scale. Network structure is intimately linked to flows of resources across the network that in turn modify the network architecture itself. This complex interplay shapes the incredibly plastic behavior of fungi and allows them to cope with patchy, ephemeral resources, competition, damage, and predation in a manner completely different from multicellular plants or animals. Here, we try to link network structure with impact on resource movement at different scales of organization to understand the benefits and challenges of organisms that grow as connected networks. This inevitably involves an interdisciplinary approach whereby mathematical modeling helps to provide a bridge between information gleaned by traditional cell and molecular techniques or biophysical approaches at a hyphal level, with observations of colony dynamics and behavior at an ecological level.

摘要

真菌菌丝作为相互连接的网络的特征生长模式对细胞事件如何在微米尺度上影响菌落行为在生态尺度上有重大影响。网络结构与资源在网络中的流动密切相关,而资源的流动又反过来改变网络结构本身。这种复杂的相互作用塑造了真菌令人难以置信的可塑性行为,使它们能够以与多细胞植物或动物完全不同的方式应对零散的、短暂的资源、竞争、损伤和捕食。在这里,我们试图将网络结构与不同组织层次上资源流动的影响联系起来,以了解作为互联网络生长的生物体的优势和挑战。这不可避免地需要一种跨学科的方法,其中数学建模有助于在传统的细胞和分子技术或菌丝水平的生物物理方法所获得的信息,与菌落动态和生态水平的行为观察之间架起桥梁。

相似文献

1
The Mycelium as a Network.菌丝体作为网络。
Microbiol Spectr. 2017 May;5(3). doi: 10.1128/microbiolspec.FUNK-0033-2017.
2
Biological solutions to transport network design.运输网络设计的生物解决方案。
Proc Biol Sci. 2007 Sep 22;274(1623):2307-15. doi: 10.1098/rspb.2007.0459.
4
Imaging complex nutrient dynamics in mycelial networks.成像菌丝网络中的复杂养分动态。
J Microsc. 2008 Aug;231(2):317-31. doi: 10.1111/j.1365-2818.2008.02043.x.
5
Modelling combat strategies in fungal mycelia.真菌菌丝体中的战斗策略建模。
J Theor Biol. 2012 Jul 7;304:226-34. doi: 10.1016/j.jtbi.2012.03.036. Epub 2012 Apr 5.
6
Cell Biology of Hyphal Growth.菌丝生长的细胞生物学。
Microbiol Spectr. 2017 Apr;5(2). doi: 10.1128/microbiolspec.FUNK-0034-2016.
8
Fungal network responses to grazing.真菌网络对放牧的响应。
Fungal Genet Biol. 2010 Jun;47(6):522-30. doi: 10.1016/j.fgb.2010.01.006. Epub 2010 Feb 6.

引用本文的文献

6
Harnessing Fungi Signaling in Living Composites.利用活复合材料中的真菌信号传导
Glob Chall. 2024 Jul 12;8(8):2400104. doi: 10.1002/gch2.202400104. eCollection 2024 Aug.
7
Tipping the plant-microbe competition for nitrogen in agricultural soils.改变农业土壤中植物与微生物对氮的竞争态势。
iScience. 2024 Sep 18;27(10):110973. doi: 10.1016/j.isci.2024.110973. eCollection 2024 Oct 18.

本文引用的文献

6
Cell Biology of Hyphal Growth.菌丝生长的细胞生物学。
Microbiol Spectr. 2017 Apr;5(2). doi: 10.1128/microbiolspec.FUNK-0034-2016.
8
Signal exchange and integration during self-fusion in filamentous fungi.丝状真菌自身融合过程中的信号交换与整合。
Semin Cell Dev Biol. 2016 Sep;57:76-83. doi: 10.1016/j.semcdb.2016.03.016. Epub 2016 Mar 23.
9
Mushrooms use convectively created airflows to disperse their spores.蘑菇利用对流产生的气流来散播它们的孢子。
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2833-8. doi: 10.1073/pnas.1509612113. Epub 2016 Feb 29.
10
Energetic Constraints on Fungal Growth.真菌生长的能量限制
Am Nat. 2016 Feb;187(2):E27-40. doi: 10.1086/684392. Epub 2015 Dec 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验