Suppr超能文献

将电子健康记录与社区层面的数据相链接,以了解儿童肥胖风险。

Linking electronic health records with community-level data to understand childhood obesity risk.

作者信息

Tomayko E J, Flood T L, Tandias A, Hanrahan L P

机构信息

College of Agricultural & Life Sciences, Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA.

School of Medicine and Public Health, Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA.

出版信息

Pediatr Obes. 2015 Dec;10(6):436-41. doi: 10.1111/ijpo.12003. Epub 2015 Jan 5.

Abstract

BACKGROUND

Environmental and socioeconomic factors should be considered along with individual characteristics when determining risk for childhood obesity.

OBJECTIVES

To assess relationships and interactions among the economic hardship index (EHI) and race/ethnicity, age and sex in regard to childhood obesity rates in Wisconsin children using an electronic health record dataset.

METHODS

Data were collected using the University of Wisconsin (UW) Public Health Information Exchange database, which links electronic health records with census-derived community-level data. Records from 53,775 children seen at UW clinics from 2007 to 2012 were included. Mixed-effects modelling was used to determine obesity rates and the interaction of EHI with covariates (race/ethnicity, age, sex). When significant interactions were determined, linear regression analyses were performed for each subgroup (e.g. by age groups).

RESULTS

The overall obesity rate was 11.7% and significant racial/ethnic disparities were detected. Childhood obesity was significantly associated with EHI at the community level (r = 0.62, P < 0.0001). A significant interaction was determined between EHI and both race/ethnicity and age on obesity rates.

CONCLUSIONS

Reducing economic disparities and improving environmental conditions may influence childhood obesity risk in some, but not all, races and ethnicities. Furthermore, the impact of EHI on obesity may be compounded over time. Our findings demonstrate the utility of linking electronic health information with census data to rapidly identify community-specific risk factors in a cost-effective manner.

摘要

背景

在确定儿童肥胖风险时,应将环境和社会经济因素与个体特征一并考虑。

目的

使用电子健康记录数据集评估威斯康星州儿童经济困难指数(EHI)与种族/民族、年龄和性别在儿童肥胖率方面的关系及相互作用。

方法

数据通过威斯康星大学(UW)公共卫生信息交换数据库收集,该数据库将电子健康记录与源自人口普查的社区层面数据相链接。纳入了2007年至2012年在UW诊所就诊的53775名儿童的记录。采用混合效应模型来确定肥胖率以及EHI与协变量(种族/民族、年龄、性别)的相互作用。当确定存在显著相互作用时,对每个亚组(如按年龄组)进行线性回归分析。

结果

总体肥胖率为11.7%,且检测到显著的种族/民族差异。在社区层面,儿童肥胖与EHI显著相关(r = 0.62,P < 0.0001)。确定EHI与种族/民族和年龄在肥胖率方面均存在显著相互作用。

结论

减少经济差距和改善环境条件可能会影响部分但并非所有种族和民族的儿童肥胖风险。此外,EHI对肥胖的影响可能会随着时间推移而加剧。我们的研究结果表明,将电子健康信息与人口普查数据相链接,有助于以具有成本效益的方式快速识别特定社区的风险因素。

相似文献

1
Linking electronic health records with community-level data to understand childhood obesity risk.
Pediatr Obes. 2015 Dec;10(6):436-41. doi: 10.1111/ijpo.12003. Epub 2015 Jan 5.
3
The association between community-level economic hardship and childhood obesity prevalence in Los Angeles.
Pediatr Obes. 2013 Dec;8(6):411-7. doi: 10.1111/j.2047-6310.2012.00123.x. Epub 2012 Dec 13.
6
Electronic health records and community health surveillance of childhood obesity.
Am J Prev Med. 2015 Feb;48(2):234-240. doi: 10.1016/j.amepre.2014.10.020.
7
Data for Community Health Assessment in Rural Colorado: A Comparison of Electronic Health Records to Public Health Surveys to Describe Childhood Obesity.
J Public Health Manag Pract. 2017 Jul/Aug;23 Suppl 4 Suppl, Community Health Status Assessment:S53-S62. doi: 10.1097/PHH.0000000000000589.
9
Community socioeconomic deprivation and obesity trajectories in children using electronic health records.
Obesity (Silver Spring). 2015 Jan;23(1):207-12. doi: 10.1002/oby.20903. Epub 2014 Oct 16.

引用本文的文献

2
Linking Electronic Health Records to the American Community Survey: Feasibility and Process.
Am J Public Health. 2022 Jun;112(6):923-930. doi: 10.2105/AJPH.2022.306783. Epub 2022 Apr 21.
3
Leveraging Data and Digital Health Technologies to Assess and Impact Social Determinants of Health (SDoH): a State-of-the-Art Literature Review.
Online J Public Health Inform. 2021 Dec 24;13(3):E14. doi: 10.5210/ojphi.v13i3.11081. eCollection 2021.
4
Small area estimation and childhood obesity surveillance using electronic health records.
PLoS One. 2021 Feb 19;16(2):e0247476. doi: 10.1371/journal.pone.0247476. eCollection 2021.
6
Community Socioeconomic Deprivation and Nonalcoholic Fatty Liver Disease Severity.
J Pediatr Gastroenterol Nutr. 2020 Mar;70(3):364-370. doi: 10.1097/MPG.0000000000002527.
7
Combining Nonclinical Determinants of Health and Clinical Data for Research and Evaluation: Rapid Review.
JMIR Public Health Surveill. 2019 Oct 7;5(4):e12846. doi: 10.2196/12846.
8
Objectively measured pediatric obesity prevalence using the OneFlorida Clinical Research Consortium.
Obes Res Clin Pract. 2019 Jan-Feb;13(1):12-15. doi: 10.1016/j.orcp.2018.10.002. Epub 2018 Nov 1.
9
A Solutions-Based Approach to Building Data-Sharing Partnerships.
EGEMS (Wash DC). 2018 Aug 22;6(1):20. doi: 10.5334/egems.236.
10
Circannual variation in relative weight of children 5 to 16 years of age.
Pediatr Obes. 2018 Jul;13(7):399-405. doi: 10.1111/ijpo.12270. Epub 2018 Apr 17.

本文引用的文献

1
Prevalence of childhood and adult obesity in the United States, 2011-2012.
JAMA. 2014 Feb 26;311(8):806-14. doi: 10.1001/jama.2014.732.
2
Accumulation of childhood poverty on young adult overweight or obese status: race/ethnicity and gender disparities.
J Epidemiol Community Health. 2014 May;68(5):478-84. doi: 10.1136/jech-2013-203062. Epub 2014 Jan 3.
3
Parental stress increases body mass index trajectory in pre-adolescents.
Pediatr Obes. 2014 Dec;9(6):435-42. doi: 10.1111/j.2047-6310.2013.00208.x. Epub 2013 Dec 5.
4
Estimating Wisconsin asthma prevalence using clinical electronic health records and public health data.
Am J Public Health. 2014 Jan;104(1):e65-73. doi: 10.2105/AJPH.2013.301396. Epub 2013 Nov 14.
6
Multi-Institutional Sharing of Electronic Health Record Data to Assess Childhood Obesity.
PLoS One. 2013 Jun 18;8(6):e66192. doi: 10.1371/journal.pone.0066192. Print 2013.
7
Reducing racial/ethnic disparities in childhood obesity: the role of early life risk factors.
JAMA Pediatr. 2013 Aug 1;167(8):731-8. doi: 10.1001/jamapediatrics.2013.85.
9
The association between community-level economic hardship and childhood obesity prevalence in Los Angeles.
Pediatr Obes. 2013 Dec;8(6):411-7. doi: 10.1111/j.2047-6310.2012.00123.x. Epub 2012 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验