Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America.
Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
PLoS One. 2021 Feb 19;16(2):e0247476. doi: 10.1371/journal.pone.0247476. eCollection 2021.
There is an urgent need for childhood surveillance systems to design, implement, and evaluate interventions at the local level. We estimated obesity prevalence for individuals aged 5-17 years using a southcentral Wisconsin EHR data repository, Public Health Information Exchange (PHINEX, 2007-2012). The prevalence estimates were calculated by aggregating the estimated probability of each individual being obese, which was obtained via a generalized linear mixed model. We incorporated the random effects at the area level into our model. A weighted procedure was employed to account for missingness in EHR data. A non-parametric kernel smoothing method was used to obtain the prevalence estimates for locations with no or little data (<20 individuals) from the EHR. These estimates were compared to results from newly available obesity atlas (2015-2016) developed from various EHRs with greater statewide representation. The mean of the zip code level obesity prevalence estimates for males and females aged 5-17 years is 16.2% (SD 2.72%); 17.9% (SD 2.14%) for males and 14.4% (SD 2.00%) for females. The results were comparable to the Wisconsin Health Atlas (WHA) estimates, a much larger dataset of local community EHRs in Wisconsin. On average, prevalence estimates were 2.12% lower in this process than the WHA estimates, with lower estimation occurring more frequently for zip codes without data in PHINEX. Using this approach, we can obtain estimates for local areas that lack EHRs data. Generally, lower prevalence estimates were produced for those locations not represented in the PHINEX database when compared to WHA estimates. This underscores the need to ensure that the reference EHRs database can be made sufficiently similar to the geographic areas where synthetic estimates are being created.
目前迫切需要建立儿童监测系统,以便在地方层面设计、实施和评估干预措施。我们利用威斯康星州中南部的电子健康记录 (EHR) 数据库和公共卫生信息交换 (PHINEX,2007-2012 年) 来估计 5-17 岁个体的肥胖流行率。通过对个体肥胖概率的估计进行汇总来计算流行率,该概率是通过广义线性混合模型获得的。我们将区域层面的随机效应纳入模型中。使用加权程序来处理 EHR 数据中的缺失情况。使用非参数核平滑方法从 EHR 中没有或很少数据 (<20 个个体) 的位置获得流行率估计值。将这些估计值与新获得的肥胖地图集 (2015-2016 年) 的结果进行比较,该地图集是利用全州代表性更强的各种 EHR 数据开发的。5-17 岁男性和女性的邮政编码水平肥胖流行率估计值的平均值为 16.2%(SD 2.72%);男性为 17.9%(SD 2.14%),女性为 14.4%(SD 2.00%)。结果与威斯康星州健康地图集 (WHA) 的估计值相似,后者是威斯康星州本地社区 EHR 的更大数据集。在此过程中,平均流行率估计值比 WHA 估计值低 2.12%,在 PHINEX 中没有数据的邮政编码中,这种估计值的偏差更为常见。通过这种方法,我们可以获得缺乏 EHR 数据的当地地区的估计值。与 WHA 估计值相比,通常在 PHINEX 数据库中未表示的位置产生的估计值较低。这强调了需要确保参考 EHR 数据库能够与合成估计值所在的地理区域足够相似。