Suppr超能文献

通过增强内反射将微波辐射捕获在中空聚吡咯微球中:一种新方法。

Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: a novel approach.

作者信息

Panigrahi Ritwik, Srivastava Suneel K

机构信息

Inorganic Materials and Polymer Nanocomposite Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India.

出版信息

Sci Rep. 2015 Jan 6;5:7638. doi: 10.1038/srep07638.

Abstract

In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59-23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported.

摘要

在当前工作中,通过在磺化聚苯乙烯(PS)微球表面原位化学氧化吡咯(Py)共聚合成了球形核(聚苯乙烯,PS)/壳(聚吡咯,PPy),随后通过将PS内核溶解在四氢呋喃(THF)中形成中空聚吡咯(HPPy)壳。此后,我们首次证实这种制备的新型形态结构通过内反射在吸收电磁波(EM)方面起到导电陷阱的作用。进一步的研究扩展到其银纳米复合材料HPPy/Ag的形成,以加强我们对这种新方法的论证。我们的研究表明,由于内反射对电磁波的捕获,在0.5 - 8 GHz频率范围内,HPPy的电磁干扰(EMI)屏蔽效率(SE)(34.5 - 6 dB)比PPy(20 - 5 dB)显著更高。我们还观察到,在10 wt% Ag负载的HPPy/Ag - 10中,EMI屏蔽进一步提高到59 - 23。这归因于内反射以及外表面反射的共同作用。使用导电聚合物具有如此高的EMI屏蔽能力的情况鲜有报道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5252/4284503/000f76b13d6e/srep07638-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验