Suppr超能文献

一种新型抗生素能杀死病原体且未检测到耐药性。

A new antibiotic kills pathogens without detectable resistance.

作者信息

Ling Losee L, Schneider Tanja, Peoples Aaron J, Spoering Amy L, Engels Ina, Conlon Brian P, Mueller Anna, Schäberle Till F, Hughes Dallas E, Epstein Slava, Jones Michael, Lazarides Linos, Steadman Victoria A, Cohen Douglas R, Felix Cintia R, Fetterman K Ashley, Millett William P, Nitti Anthony G, Zullo Ashley M, Chen Chao, Lewis Kim

机构信息

NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA.

1] Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany [2] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany.

出版信息

Nature. 2015 Jan 22;517(7535):455-9. doi: 10.1038/nature14098. Epub 2015 Jan 7.

Abstract

Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.

摘要

抗生素耐药性的传播速度比新化合物引入临床实践的速度更快,从而引发了一场公共卫生危机。大多数抗生素是通过筛选土壤微生物生产的,但到20世纪60年代,这种可培养细菌的有限资源已被过度开采。生产抗生素的合成方法无法取代这一平台。未培养细菌约占外部环境中所有物种的99%,是新抗生素的未开发来源。我们开发了几种通过原位培养或使用特定生长因子来培养未培养生物的方法。在此,我们报告一种新的抗生素,我们将其命名为替考拉宁,它是在对未培养细菌的筛选中发现的。替考拉宁通过与脂II(肽聚糖前体)和脂III(细胞壁磷壁酸前体)的高度保守基序结合来抑制细胞壁合成。我们没有获得对替考拉宁耐药的金黄色葡萄球菌或结核分枝杆菌的任何突变体。这种化合物的特性为开发可能避免耐药性产生的抗生素指明了一条道路。

相似文献

1
A new antibiotic kills pathogens without detectable resistance.
Nature. 2015 Jan 22;517(7535):455-9. doi: 10.1038/nature14098. Epub 2015 Jan 7.
2
Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis.
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6510-6517. doi: 10.1128/AAC.01050-16. Print 2016 Nov.
3
4
Teixobactin kills bacteria by a two-pronged attack on the cell envelope.
Nature. 2022 Aug;608(7922):390-396. doi: 10.1038/s41586-022-05019-y. Epub 2022 Aug 3.
5
Role of the Operon in Cell Wall Biosynthesis, Autolysis, Integrity, and Antibiotic Resistance in Staphylococcus aureus.
Antimicrob Agents Chemother. 2019 Sep 23;63(10). doi: 10.1128/AAC.00680-19. Print 2019 Oct.
6
Bacteria: Assessing resistance to new antibiotics.
Nature. 2015 Mar 12;519(7542):158. doi: 10.1038/519158e.
7
Teixobactin, the first of a new class of antibiotics discovered by iChip technology?
J Antimicrob Chemother. 2015 Oct;70(10):2679-80. doi: 10.1093/jac/dkv175. Epub 2015 Jun 18.
8
Teixobactin and Its Analogues: A New Hope in Antibiotic Discovery.
ACS Infect Dis. 2017 Oct 13;3(10):688-690. doi: 10.1021/acsinfecdis.7b00108. Epub 2017 Aug 3.
10
Antibiotics: An irresistible newcomer.
Nature. 2015 Jan 22;517(7535):442-4. doi: 10.1038/nature14193. Epub 2015 Jan 7.

引用本文的文献

1
Advancements in the design and development of pyrazoline-based antimycobacterial agents: an update and future perspectives.
RSC Adv. 2025 Sep 1;15(38):31360-31401. doi: 10.1039/d5ra03759j. eCollection 2025 Aug 29.
3
FTIR-Derived Feature Insights for Predicting Time-Dependent Antibiotic Resistance Progression.
Antibiotics (Basel). 2025 Aug 15;14(8):831. doi: 10.3390/antibiotics14080831.
4
Reconstructing the Antibiotic Pipeline: Natural Alternatives to Antibacterial Agents.
Biomolecules. 2025 Aug 18;15(8):1182. doi: 10.3390/biom15081182.
7
Synergistic Ciprofloxacin-RWn Peptide Therapy Overcomes Drug Resistance in Gram-Negative Bacteria.
ACS Omega. 2025 Jun 30;10(32):35698-35705. doi: 10.1021/acsomega.5c02285. eCollection 2025 Aug 19.
10
Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies.
Pharmaceuticals (Basel). 2025 Jun 24;18(7):947. doi: 10.3390/ph18070947.

本文引用的文献

1
A roadmap for natural product discovery based on large-scale genomics and metabolomics.
Nat Chem Biol. 2014 Nov;10(11):963-8. doi: 10.1038/nchembio.1659. Epub 2014 Sep 28.
2
Prioritized current unmet needs for antibacterial therapies.
Clin Pharmacol Ther. 2014 Aug;96(2):151-3. doi: 10.1038/clpt.2014.106.
3
Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis.
Science. 2014 Jul 11;345(6193):220-2. doi: 10.1126/science.1254522.
4
Bacterial phylogeny structures soil resistomes across habitats.
Nature. 2014 May 29;509(7502):612-6. doi: 10.1038/nature13377. Epub 2014 May 21.
5
Transcription inhibition by the depsipeptide antibiotic salinamide A.
Elife. 2014 Apr 30;3:e02451. doi: 10.7554/eLife.02451.
6
Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2.
Chem Biol. 2014 Apr 24;21(4):509-518. doi: 10.1016/j.chembiol.2014.01.014. Epub 2014 Mar 27.
7
An environmental bacterial taxon with a large and distinct metabolic repertoire.
Nature. 2014 Feb 6;506(7486):58-62. doi: 10.1038/nature12959. Epub 2014 Jan 29.
8
Activated ClpP kills persisters and eradicates a chronic biofilm infection.
Nature. 2013 Nov 21;503(7476):365-70. doi: 10.1038/nature12790. Epub 2013 Nov 13.
9
Platforms for antibiotic discovery.
Nat Rev Drug Discov. 2013 May;12(5):371-87. doi: 10.1038/nrd3975.
10
Genome sequence-based species delimitation with confidence intervals and improved distance functions.
BMC Bioinformatics. 2013 Feb 21;14:60. doi: 10.1186/1471-2105-14-60.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验