Ling Losee L, Schneider Tanja, Peoples Aaron J, Spoering Amy L, Engels Ina, Conlon Brian P, Mueller Anna, Schäberle Till F, Hughes Dallas E, Epstein Slava, Jones Michael, Lazarides Linos, Steadman Victoria A, Cohen Douglas R, Felix Cintia R, Fetterman K Ashley, Millett William P, Nitti Anthony G, Zullo Ashley M, Chen Chao, Lewis Kim
NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA.
1] Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany [2] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany.
Nature. 2015 Jan 22;517(7535):455-9. doi: 10.1038/nature14098. Epub 2015 Jan 7.
Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.
抗生素耐药性的传播速度比新化合物引入临床实践的速度更快,从而引发了一场公共卫生危机。大多数抗生素是通过筛选土壤微生物生产的,但到20世纪60年代,这种可培养细菌的有限资源已被过度开采。生产抗生素的合成方法无法取代这一平台。未培养细菌约占外部环境中所有物种的99%,是新抗生素的未开发来源。我们开发了几种通过原位培养或使用特定生长因子来培养未培养生物的方法。在此,我们报告一种新的抗生素,我们将其命名为替考拉宁,它是在对未培养细菌的筛选中发现的。替考拉宁通过与脂II(肽聚糖前体)和脂III(细胞壁磷壁酸前体)的高度保守基序结合来抑制细胞壁合成。我们没有获得对替考拉宁耐药的金黄色葡萄球菌或结核分枝杆菌的任何突变体。这种化合物的特性为开发可能避免耐药性产生的抗生素指明了一条道路。