Suppr超能文献

用于多模态等强度婴儿脑图像分割的深度卷积神经网络

Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.

作者信息

Zhang Wenlu, Li Rongjian, Deng Houtao, Wang Li, Lin Weili, Ji Shuiwang, Shen Dinggang

机构信息

Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA.

Instacart, San Francisco, CA 94107, USA.

出版信息

Neuroimage. 2015 Mar;108:214-24. doi: 10.1016/j.neuroimage.2014.12.061. Epub 2015 Jan 3.

Abstract

The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6-8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multi-modality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement.

摘要

将婴儿脑组织图像分割为白质(WM)、灰质(GM)和脑脊液(CSF)在研究健康和疾病状态下的早期脑发育过程中起着重要作用。在等强度阶段(大约6 - 8个月大),白质和灰质在T1和T2磁共振图像中表现出相似的强度水平,这使得组织分割极具挑战性。现有的方法中只有少数是针对这个等强度阶段的组织分割设计的;然而,它们仅使用单个T1或T2图像,或者T1和T2图像的组合。在本文中,我们提出使用深度卷积神经网络(CNN),通过多模态磁共振图像对等强度阶段的脑组织进行分割。CNN是一种深度模型,其中可训练滤波器和局部邻域池化操作交替应用于原始输入图像,从而产生越来越复杂的特征层次结构。具体而言,我们将来自T1、T2和分数各向异性(FA)图像的多模态信息作为输入,然后生成分割图作为输出。多个中间层应用卷积、池化、归一化和其他操作来捕捉输入和输出之间的高度非线性映射。我们在一组手动分割的等强度阶段脑图像上,将我们的方法与常用分割方法的性能进行了比较。结果表明,我们提出的模型在婴儿脑组织分割方面显著优于先前的方法。此外,我们的结果表明多模态图像的整合导致了性能的显著提升。

相似文献

1
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.
Neuroimage. 2015 Mar;108:214-24. doi: 10.1016/j.neuroimage.2014.12.061. Epub 2015 Jan 3.
2
FULLY CONVOLUTIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2016;2016:1342-1345. doi: 10.1109/ISBI.2016.7493515.
3
LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.
Neuroimage. 2015 Mar;108:160-72. doi: 10.1016/j.neuroimage.2014.12.042. Epub 2014 Dec 22.
4
3D-MASNet: 3D mixed-scale asymmetric convolutional segmentation network for 6-month-old infant brain MR images.
Hum Brain Mapp. 2023 Mar;44(4):1779-1792. doi: 10.1002/hbm.26174. Epub 2022 Dec 14.
6
3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation.
IEEE Trans Cybern. 2019 Mar;49(3):1123-1136. doi: 10.1109/TCYB.2018.2797905. Epub 2018 Feb 8.
7
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Med Phys. 2016 Dec;43(12):6588-6597. doi: 10.1118/1.4967487.
9
A novel hybrid atlas-free hierarchical graph-based segmentation of newborn brain MRI using wavelet filter banks.
Int J Neurosci. 2020 May;130(5):499-514. doi: 10.1080/00207454.2019.1695609. Epub 2019 Dec 1.
10
Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation.
Neuroimage. 2014 Apr 1;89:152-64. doi: 10.1016/j.neuroimage.2013.11.040. Epub 2013 Nov 28.

引用本文的文献

2
Groupwise registration of infant brain diffusion tensor images using intermediate subgroup templates.
PLoS One. 2025 Jun 26;20(6):e0325844. doi: 10.1371/journal.pone.0325844. eCollection 2025.
5
Diffusion MRI with Machine Learning.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00353. Epub 2024 Nov 12.
6
Hybrid deep learning approach for brain tumor classification using EfficientNetB0 and novel quantum genetic algorithm.
PeerJ Comput Sci. 2025 Jan 21;11:e2556. doi: 10.7717/peerj-cs.2556. eCollection 2025.
7
Neural network-based arterial diameter estimation from ultrasound data.
PLOS Digit Health. 2024 Dec 2;3(12):e0000659. doi: 10.1371/journal.pdig.0000659. eCollection 2024 Dec.
8
VINNA for neonates: Orientation independence through latent augmentations.
Imaging Neurosci (Camb). 2024 May 30;2:1-26. doi: 10.1162/imag_a_00180. eCollection 2024 May 1.

本文引用的文献

1
Mitosis detection in breast cancer histology images with deep neural networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):411-8. doi: 10.1007/978-3-642-40763-5_51.
2
Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):58-65. doi: 10.1007/978-3-642-40811-3_8.
3
Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation.
Neuroimage. 2014 Apr 1;89:152-64. doi: 10.1016/j.neuroimage.2013.11.040. Epub 2013 Nov 28.
4
Connectomic reconstruction of the inner plexiform layer in the mouse retina.
Nature. 2013 Aug 8;500(7461):168-74. doi: 10.1038/nature12346.
5
iBEAT: A toolbox for infant brain magnetic resonance image processing.
Neuroinformatics. 2013 Apr;11(2):211-25. doi: 10.1007/s12021-012-9164-z.
6
4D multi-modality tissue segmentation of serial infant images.
PLoS One. 2012;7(9):e44596. doi: 10.1371/journal.pone.0044596. Epub 2012 Sep 25.
7
Adaptive prior probability and spatial temporal intensity change estimation for segmentation of the one-year-old human brain.
J Neurosci Methods. 2013 Jan 15;212(1):43-55. doi: 10.1016/j.jneumeth.2012.09.018. Epub 2012 Sep 29.
8
Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age.
Cereb Cortex. 2013 Nov;23(11):2724-33. doi: 10.1093/cercor/bhs265. Epub 2012 Aug 23.
9
Morphology-driven automatic segmentation of MR images of the neonatal brain.
Med Image Anal. 2012 Dec;16(8):1565-79. doi: 10.1016/j.media.2012.07.006. Epub 2012 Jul 31.
10
AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI.
Neuroimage. 2013 Jan 15;65:97-108. doi: 10.1016/j.neuroimage.2012.08.009. Epub 2012 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验