IEEE Trans Cybern. 2019 Mar;49(3):1123-1136. doi: 10.1109/TCYB.2018.2797905. Epub 2018 Feb 8.
Accurate segmentation of infant brain images into different regions of interest is one of the most important fundamental steps in studying early brain development. In the isointense phase (approximately 6-8 months of age), white matter and gray matter exhibit similar levels of intensities in magnetic resonance (MR) images, due to the ongoing myelination and maturation. This results in extremely low tissue contrast and thus makes tissue segmentation very challenging. Existing methods for tissue segmentation in this isointense phase usually employ patch-based sparse labeling on single modality. To address the challenge, we propose a novel 3-D multimodal fully convolutional network (FCN) architecture for segmentation of isointense phase brain MR images. Specifically, we extend the conventional FCN architectures from 2-D to 3-D, and, rather than directly using FCN, we intuitively integrate coarse (naturally high-resolution) and dense (highly semantic) feature maps to better model tiny tissue regions, in addition, we further propose a transformation module to better connect the aggregating layers; we also propose a fusion module to better serve the fusion of feature maps. We compare the performance of our approach with several baseline and state-of-the-art methods on two sets of isointense phase brain images. The comparison results show that our proposed 3-D multimodal FCN model outperforms all previous methods by a large margin in terms of segmentation accuracy. In addition, the proposed framework also achieves faster segmentation results compared to all other methods. Our experiments further demonstrate that: 1) carefully integrating coarse and dense feature maps can considerably improve the segmentation performance; 2) batch normalization can speed up the convergence of the networks, especially when hierarchical feature aggregations occur; and 3) integrating multimodal information can further boost the segmentation performance.
准确地将婴儿脑图像分割为不同的感兴趣区域是研究早期大脑发育的最重要的基本步骤之一。在等信号强度期(约 6-8 个月龄),由于髓鞘形成和成熟,磁共振(MR)图像中的白质和灰质呈现出相似的强度水平,这导致组织对比度极低,从而使组织分割极具挑战性。在等信号强度期进行组织分割的现有方法通常采用基于补丁的稀疏标记单模态。为了解决这个挑战,我们提出了一种新的 3D 多模态全卷积网络(FCN)架构,用于分割等信号强度期的脑 MR 图像。具体来说,我们将传统的 FCN 架构从 2D 扩展到 3D,并且,我们不是直接使用 FCN,而是直观地将粗(自然高分辨率)和密(高度语义)特征图集成到模型中,以更好地建模微小的组织区域,此外,我们进一步提出了一个转换模块,以更好地连接聚合层;我们还提出了一个融合模块,以更好地服务于特征图的融合。我们在两组等信号强度期脑图像上,将我们的方法与几种基线和最新方法的性能进行了比较。比较结果表明,在分割精度方面,我们提出的 3D 多模态 FCN 模型比以前的所有方法都有很大的优势。此外,与所有其他方法相比,所提出的框架还实现了更快的分割结果。我们的实验进一步证明:1)仔细地集成粗和密特征图可以显著提高分割性能;2)批量归一化可以加速网络的收敛,特别是在发生层次特征聚合时;3)集成多模态信息可以进一步提高分割性能。