Suppr超能文献

监测误差网格。

The surveillance error grid.

作者信息

Klonoff David C, Lias Courtney, Vigersky Robert, Clarke William, Parkes Joan Lee, Sacks David B, Kirkman M Sue, Kovatchev Boris

机构信息

Mills-Peninsula Health Services, San Mateo, CA, USA

US Food and Drug Administration, Silver Spring, MD, USA.

出版信息

J Diabetes Sci Technol. 2014 Jul;8(4):658-72. doi: 10.1177/1932296814539589. Epub 2014 Jun 13.

Abstract

Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to the data plotted on the CEG and PEG produced risk estimates that were more granular and reflective of a continuously increasing risk scale. The SEG is a modern metric for clinical risk assessments of BG monitor errors that assigns a unique risk score to each monitor data point when compared to a reference value. The SEG allows the clinical accuracy of a BG monitor to be portrayed in many ways, including as the percentages of data points falling into custom-defined risk zones. For modeled data the SEG, compared with the CEG and PEG, allows greater precision for quantifying risk, especially when the risks are low. This tool will be useful to allow regulators and manufacturers to monitor and evaluate glucose monitor performance in their surveillance programs.

摘要

目前用于评估血糖仪临床准确性的误差网格是基于过时的医学实践。误差网格尚未被监管机构广泛用于血糖仪的审批,但这类工具对于监测已获批产品的性能可能有用。糖尿病技术协会与美国食品药品监督管理局、美国糖尿病协会、内分泌学会、医疗仪器促进协会的代表,以及学术界、产业界和政府的代表共同开发了一种新的误差网格,称为监测误差网格(SEG),作为评估不准确血糖仪带来的临床风险程度的工具。对206名糖尿病临床医生进行了关于血糖仪测量血糖水平误差的临床风险的调查。调查了此类误差对4种患者情况的影响。每个血糖仪/参考数据对根据其平均风险评级在图表上进行评分并进行颜色编码。使用代表当代血糖仪准确性的模拟数据,计算了克拉克误差网格(CEG)、帕克斯误差网格(PEG)和SEG的临床风险与血糖仪误差之间的关系。无论患者是1型还是2型糖尿病,是否使用胰岛素,SEG的行动边界在各种情况下都是一致的。在成人/儿科或4类临床医生的回答之间未发现显著差异。尽管注意到美国和非美国临床医生在风险边界上存在一些小的具体差异,但专家组认为这不足以证明需要为这两类临床医生设置单独的网格。SEG的数据点根据其指定的风险水平被分为15个区域,这便于与经典的CEG和PEG进行比较。与在CEG和PEG上绘制的数据相比,将血糖仪测试实验得出的具有实际血糖自我监测误差的模拟血糖仪数据绘制在SEG上时,产生的风险估计更细致,反映了风险规模的持续增加。SEG是一种用于血糖仪误差临床风险评估的现代指标,与参考值相比,它为每个血糖仪数据点分配一个独特的风险分数。SEG允许以多种方式描绘血糖仪的临床准确性,包括落入自定义风险区域的数据点百分比。对于模拟数据,与CEG和PEG相比,SEG在量化风险方面具有更高的精度,尤其是在风险较低时。该工具将有助于监管机构和制造商在其监测计划中监测和评估血糖仪的性能。

相似文献

1
The surveillance error grid.
J Diabetes Sci Technol. 2014 Jul;8(4):658-72. doi: 10.1177/1932296814539589. Epub 2014 Jun 13.
2
Computing the surveillance error grid analysis: procedure and examples.
J Diabetes Sci Technol. 2014 Jul;8(4):673-84. doi: 10.1177/1932296814539590. Epub 2014 Jun 13.
4
Technical aspects of the Parkes error grid.
J Diabetes Sci Technol. 2013 Sep 1;7(5):1275-81. doi: 10.1177/193229681300700517.
5
Multisite evaluation of a new diabetes self-test for glucose and glycated protein (fructosamine).
Diabetes Technol Ther. 2000 Summer;2(2):233-8. doi: 10.1089/15209150050025195.
6
Retrospective Analysis of Continuous Glucose Monitoring Data With the Surveillance Error Grid Supports Nonadjunctive Dosing Decisions.
J Diabetes Sci Technol. 2017 Sep;11(5):942-946. doi: 10.1177/1932296817694180. Epub 2017 Feb 15.
7
A Multicenter Performance Evaluation of a Blood Glucose Monitoring System in 21 Leading Hospitals in Spain.
J Diabetes Sci Technol. 2015 Aug 7;10(1):93-100. doi: 10.1177/1932296815598777.
10
Investigation of the Accuracy of 18 Marketed Blood Glucose Monitors.
Diabetes Care. 2018 Aug;41(8):1681-1688. doi: 10.2337/dc17-1960. Epub 2018 Jun 13.

引用本文的文献

2
Racial disparities in continuous glucose monitoring-based 60-min glucose predictions among people with type 1 diabetes.
PLOS Digit Health. 2025 Jun 30;4(6):e0000918. doi: 10.1371/journal.pdig.0000918. eCollection 2025 Jun.
4
Evaluating the precision and reliability of real-time continuous glucose monitoring systems in ambulatory settings: a systematic review.
Ther Adv Endocrinol Metab. 2024 Dec 11;15:20420188241304459. doi: 10.1177/20420188241304459. eCollection 2024.
5
The Diabetes Technology Society Error Grid and Trend Accuracy Matrix for Glucose Monitors.
J Diabetes Sci Technol. 2024 Nov;18(6):1346-1361. doi: 10.1177/19322968241275701. Epub 2024 Oct 6.
6
7
Using Artificial Intelligence to Improve the Accuracy of a Wrist-Worn, Noninvasive Glucose Monitor: A Pilot Study.
J Diabetes Sci Technol. 2024 May 17:19322968241252819. doi: 10.1177/19322968241252819.
8
Accuracy of continuous glucose monitoring during exercise-related hypoglycemia in individuals with type 1 diabetes.
Front Endocrinol (Lausanne). 2024 Apr 15;15:1352829. doi: 10.3389/fendo.2024.1352829. eCollection 2024.
9
Accuracy of a Non-Invasive Home Glucose Monitor for Measurement of Blood Glucose.
Indian J Endocrinol Metab. 2024 Jan-Feb;28(1):60-64. doi: 10.4103/ijem.ijem_36_23. Epub 2024 Feb 26.

本文引用的文献

1
Technical aspects of the Parkes error grid.
J Diabetes Sci Technol. 2013 Sep 1;7(5):1275-81. doi: 10.1177/193229681300700517.
2
Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case-control study.
Diabetologia. 2013 Nov;56(11):2392-400. doi: 10.1007/s00125-013-3007-9. Epub 2013 Aug 21.
3
Do currently available blood glucose monitors meet regulatory standards? 1-day public meeting in Arlington, Virginia.
J Diabetes Sci Technol. 2013 Jul 1;7(4):1071-83. doi: 10.1177/193229681300700432.
4
Self-reported non-severe hypoglycaemic events in Europe.
Diabet Med. 2014 Jan;31(1):92-101. doi: 10.1111/dme.12261. Epub 2013 Jul 26.
5
Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society.
Diabetes Care. 2013 May;36(5):1384-95. doi: 10.2337/dc12-2480. Epub 2013 Apr 15.
8
The need for clinical accuracy guidelines for blood glucose monitors.
J Diabetes Sci Technol. 2012 Jan 1;6(1):1-4. doi: 10.1177/193229681200600101.
9
Short- and long-term effects of real-time continuous glucose monitoring in patients with type 2 diabetes.
Diabetes Care. 2012 Jan;35(1):32-8. doi: 10.2337/dc11-1438. Epub 2011 Nov 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验