Suppr超能文献

幼儿静息状态振荡中的生理伪迹:嘈杂数据的方法学考量

Physiologic artifacts in resting state oscillations in young children: methodological considerations for noisy data.

作者信息

McEvoy Kevin, Hasenstab Kyle, Senturk Damla, Sanders Andrew, Jeste Shafali S

机构信息

Semel Institute for Neuroscience and Human Behavior, Center for Autism Research and Treatment, University of California Los Angeles, 760 Westwood Plaza, Suite 68-237, Los Angeles, CA, 90095, USA.

出版信息

Brain Imaging Behav. 2015 Mar;9(1):104-14. doi: 10.1007/s11682-014-9343-7.

Abstract

We quantified the potential effects of physiologic artifact on the estimation of EEG band power in a cohort of typically developing children in order to guide artifact rejection methods in quantitative EEG data analysis in developmental populations. High density EEG was recorded for 2 min while children, ages 2-6, watched a video of bubbles. Segments of data were categorized as blinks, saccades, EMG or artifact-free, and both absolute and relative power in the theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (35-45 Hz) bands were calculated in 9 regions for each category. Using a linear mixed model approach with artifact type, region and their interaction as predictors, we compared mean band power between clean data and each type of artifact. We found significant differences in mean relative and absolute power between artifacts and artifact-free segments in all frequency bands. The magnitude and direction of the differences varied based on power type, region, and frequency band. The most significant differences in mean band power were found in the gamma band for EMG artifact and the theta band for ocular artifacts. Artifact detection strategies need to be sensitive to the oscillations of interest for a given analysis, with the most conservative approach being the removal of all EMG and ocular artifact from EEG data. Quantitative EEG holds considerable promise as a clinical biomarker of both typical and atypical development. However, there needs to be transparency in the choice of power type, regions of interest, and frequency band, as each of these variables are differentially vulnerable to noise, and therefore, their interpretation depends on the methods used to identify and remove artifacts.

摘要

我们对一组发育正常儿童的脑电图频段功率估计中生理伪迹的潜在影响进行了量化,以指导发育人群定量脑电图数据分析中的伪迹去除方法。在2至6岁儿童观看气泡视频时,记录了2分钟的高密度脑电图。数据段被分类为眨眼、扫视、肌电图或无伪迹,并且针对每个类别在9个区域中计算了θ(4 - 7Hz)、α(8 - 12Hz)、β(13 - 30Hz)和γ(35 - 45Hz)频段的绝对功率和相对功率。使用线性混合模型方法,将伪迹类型、区域及其相互作用作为预测因子,我们比较了干净数据与每种伪迹类型之间的平均频段功率。我们发现在所有频段中,伪迹与无伪迹段之间的平均相对功率和绝对功率存在显著差异。差异的大小和方向因功率类型、区域和频段而异。在肌电图伪迹的γ频段和眼部伪迹的θ频段中发现了平均频段功率的最显著差异。伪迹检测策略需要对给定分析中感兴趣的振荡敏感,最保守的方法是从脑电图数据中去除所有肌电图和眼部伪迹。定量脑电图作为典型和非典型发育的临床生物标志物具有很大的前景。然而,在功率类型、感兴趣区域和频段的选择上需要保持透明,因为这些变量中的每一个对噪声的敏感度不同,因此,它们的解释取决于用于识别和去除伪迹的方法。

相似文献

2
Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction.
Neuroimage. 2009 Oct 15;48(1):94-108. doi: 10.1016/j.neuroimage.2009.06.022. Epub 2009 Jun 16.
5
Eye-movement artifact correction in infant EEG: A systematic comparison between ICA and Artifact Blocking.
J Neurosci Methods. 2025 Jun;418:110405. doi: 10.1016/j.jneumeth.2025.110405. Epub 2025 Mar 22.
6
Detection of artifacts from high energy bursts in neonatal EEG.
Comput Biol Med. 2013 Nov;43(11):1804-14. doi: 10.1016/j.compbiomed.2013.07.031. Epub 2013 Aug 22.
7
A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements.
J Neural Eng. 2016 Apr;13(2):026013. doi: 10.1088/1741-2560/13/2/026013. Epub 2016 Feb 10.
8
Isolating gait-related movement artifacts in electroencephalography during human walking.
J Neural Eng. 2015 Aug;12(4):046022. doi: 10.1088/1741-2560/12/4/046022. Epub 2015 Jun 17.
9
Ocular artifacts in children's EEG: selection is better than correction.
Biol Psychol. 1998 Aug;48(3):281-300. doi: 10.1016/s0301-0511(98)00041-6.
10
Deep Brain Stimulator (DBS) Artifact in the EEG of a Pediatric Patient.
Clin EEG Neurosci. 2024 Sep;55(5):572-575. doi: 10.1177/15500594231194958. Epub 2023 Aug 23.

引用本文的文献

1
Flexible Regularized Estimation in High-Dimensional Mixed Membership Models.
Comput Stat Data Anal. 2024 Jun;194. doi: 10.1016/j.csda.2024.107931. Epub 2024 Feb 9.
4
Frontal EEG alpha asymmetry in youth with autism: Sex differences and social-emotional correlates.
Autism Res. 2023 Dec;16(12):2364-2377. doi: 10.1002/aur.3032. Epub 2023 Sep 29.
5
A comparison of resting-state eyes-closed and dark-room alpha-band activity in children.
Psychophysiology. 2023 Jun;60(6):e14285. doi: 10.1111/psyp.14285. Epub 2023 Mar 16.
8
Resting state EEG in youth with ASD: age, sex, and relation to phenotype.
J Neurodev Disord. 2021 Sep 13;13(1):33. doi: 10.1186/s11689-021-09390-1.
10
The development of theta and alpha neural oscillations from ages 3 to 24 years.
Dev Cogn Neurosci. 2021 Aug;50:100969. doi: 10.1016/j.dcn.2021.100969. Epub 2021 May 31.

本文引用的文献

1
Electrophysiological evidence of heterogeneity in visual statistical learning in young children with ASD.
Dev Sci. 2015 Jan;18(1):90-105. doi: 10.1111/desc.12188. Epub 2014 May 13.
3
Resting state EEG abnormalities in autism spectrum disorders.
J Neurodev Disord. 2013 Sep 16;5(1):24. doi: 10.1186/1866-1955-5-24.
4
Guidelines and best practices for electrophysiological data collection, analysis and reporting in autism.
J Autism Dev Disord. 2015 Feb;45(2):425-43. doi: 10.1007/s10803-013-1916-6.
5
Perspective: Brain scans need a rethink.
Nature. 2012 Nov 1;491(7422):S20. doi: 10.1038/491s20a.
6
Early behavioral intervention is associated with normalized brain activity in young children with autism.
J Am Acad Child Adolesc Psychiatry. 2012 Nov;51(11):1150-9. doi: 10.1016/j.jaac.2012.08.018.
7
Clinical utility of EEG in attention-deficit/hyperactivity disorder: a research update.
Neurotherapeutics. 2012 Jul;9(3):569-87. doi: 10.1007/s13311-012-0131-z.
8
Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder.
PLoS One. 2012;7(6):e39127. doi: 10.1371/journal.pone.0039127. Epub 2012 Jun 20.
9
The utility of EEG band power analysis in the study of infancy and early childhood.
Dev Neuropsychol. 2012;37(3):253-73. doi: 10.1080/87565641.2011.614663.
10
Cortical source of blink-related delta oscillations and their correlation with levels of consciousness.
Hum Brain Mapp. 2013 Sep;34(9):2178-89. doi: 10.1002/hbm.22056. Epub 2012 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验