Suppr超能文献

利用TV流和最大稳定极值区域特征从非增强CT图像中进行肾结石的计算机辅助检测。

Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features.

作者信息

Liu Jianfei, Wang Shijun, Turkbey Evrim B, Linguraru Marius George, Yao Jianhua, Summers Ronald M

机构信息

Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland 20892-1182.

Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System Center, Washington, DC 20010 and School of Medicine and Health Sciences, George Washington University, Washington, DC 20010.

出版信息

Med Phys. 2015 Jan;42(1):144-53. doi: 10.1118/1.4903056.

Abstract

PURPOSE

Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images.

METHODS

The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing.

RESULTS

At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e - 3) on all calculi from 1 to 433 mm(3) in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered.

CONCLUSIONS

Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis.

摘要

目的

肾结是计算机断层结肠造影(CTC)中常见的结肠外偶然发现。本研究旨在开发一种全自动计算机辅助诊断系统,以准确检测CTC图像上的肾结。

方法

作者开发了一种全变差(TV)流方法,以减少肾脏内的图像噪声,同时保持肾结的特征外观。然后计算最大稳定极值区域(MSER)特征,以稳健地识别结石候选物。最后,作者计算了纹理和形状特征,并将其导入支持向量机进行结石分类。该方法在192例患者的数据集上进行了验证,并与通过阈值检测结石的基线方法进行了比较。作者还将他们的方法与使用各向异性扩散和非平滑处理的检测方法进行了比较。

结果

在每位患者8例假阳性率的情况下,新方法和基线阈值方法对测试数据集中1至433立方毫米的所有结石的敏感度分别为69%和35%(p < 1e - 3)。使用各向异性扩散和非平滑处理的检测方法的敏感度分别为36%和0%。如果仅考虑更大且更具临床相关性的结石,新方法的敏感度可提高到90%。

结论

实验结果表明,TV流和MSER特征是在低剂量、高噪声CTC图像上稳健准确地检测肾结的有效手段。因此,所提出的方法有可能改善诊断。

相似文献

本文引用的文献

1
Extracolonic findings on CT colonography: does the benefit outweigh the cost?
Acad Radiol. 2013 Jun;20(6):665-6. doi: 10.1016/j.acra.2013.03.005.
3
Image noise level estimation by principal component analysis.基于主成分分析的图像噪声水平估计。
IEEE Trans Image Process. 2013 Feb;22(2):687-99. doi: 10.1109/TIP.2012.2221728. Epub 2012 Sep 28.
4
Temporal trends in the incidence of kidney stone disease.肾结石病发病率的时间趋势。
Kidney Int. 2013 Jan;83(1):146-52. doi: 10.1038/ki.2012.320. Epub 2012 Sep 19.
5
Prevalence of kidney stones in the United States.美国肾结石的患病率。
Eur Urol. 2012 Jul;62(1):160-5. doi: 10.1016/j.eururo.2012.03.052. Epub 2012 Mar 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验