Porter Lauren L, He Yanan, Chen Yihong, Orban John, Bryan Philip N
Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland; Potomac Affinity Proteins, Rockville, Maryland.
Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland.
Biophys J. 2015 Jan 6;108(1):154-62. doi: 10.1016/j.bpj.2014.10.073.
Metamorphic proteins, including proteins with high levels of sequence identity but different folds, are exceptions to the long-standing rule-of-thumb that proteins with as little as 30% sequence identity adopt the same fold. Which topologies can be bridged by these highly identical sequences remains an open question. Here we bridge two 3-α-helix bundle proteins with two radically different folds. Using a straightforward approach, we engineered the sequences of one subdomain within maltose binding protein (MBP, α/β/α-sandwich) and another within outer surface protein A (OspA, β-sheet) to have high sequence identity (80 and 77%, respectively) with engineered variants of protein G (GA, 3-α-helix bundle). Circular dichroism and nuclear magnetic resonance spectra of all engineered variants demonstrate that they maintain their native conformations despite substantial sequence modification. Furthermore, the MBP variant (80% identical to GA) remained active. Thermodynamic analysis of numerous GA and MBP variants suggests that the key to our approach involved stabilizing the modified MBP and OspA subdomains via external interactions with neighboring substructures, indicating that subdomain interactions can stabilize alternative folds over a broad range of sequence variation. These findings suggest that it is possible to bridge one fold with many other topologies, which has implications for protein folding, evolution, and misfolding diseases.
变质蛋白,包括那些具有高度序列同一性但折叠方式不同的蛋白,是长期以来经验法则的例外情况,该法则认为序列同一性低至30%的蛋白会采用相同的折叠方式。这些高度相同的序列能够连接哪些拓扑结构仍是一个悬而未决的问题。在这里,我们连接了两种具有截然不同折叠方式的3-α-螺旋束蛋白。我们采用一种直接的方法,对麦芽糖结合蛋白(MBP,α/β/α-三明治结构)内的一个亚结构域以及外表面蛋白A(OspA,β-折叠片层结构)内的另一个亚结构域进行工程改造,使其与蛋白G的工程变体(GA,3-α-螺旋束结构)具有高度的序列同一性(分别为80%和77%)。所有工程变体的圆二色光谱和核磁共振光谱表明,尽管进行了大量的序列修饰,它们仍保持其天然构象。此外,MBP变体(与GA有80%的序列同一性)仍具有活性。对众多GA和MBP变体的热力学分析表明,我们方法的关键在于通过与相邻亚结构的外部相互作用来稳定修饰后的MBP和OspA亚结构域,这表明亚结构域相互作用能够在广泛的序列变异范围内稳定替代折叠。这些发现表明,有可能将一种折叠方式与许多其他拓扑结构连接起来,这对蛋白质折叠、进化和错误折叠疾病具有重要意义。