Suppr超能文献

复杂低对称氧化物中的螺旋位错:核心结构、能量学及其对晶体生长的影响。

Screw dislocations in complex, low symmetry oxides: core structures, energetics, and impact on crystal growth.

作者信息

Shahsavari Rouzbeh, Chen Lu

机构信息

Department of Civil and Environmental Engineering, ‡Department of Material Science and NanoEngineering, §Smalley Institute for Nanoscale Science and Technology, Rice University , Houston, Texas 77005, United States.

出版信息

ACS Appl Mater Interfaces. 2015 Feb 4;7(4):2223-34. doi: 10.1021/am5091808. Epub 2015 Jan 20.

Abstract

Determining the atomic structure and the influence of defects on properties of low symmetry oxides have long been an engineering pursuit. Here, we focus on five thermodynamically reversible monoclinic and orthorhombic polymorphs of dicalcium silicates (Ca2SiO3)-a key cement constituent-as a model system and use atomistic simulations to unravel the interplay between the screw dislocation core energies, nonplanar core structures, and Peierls stresses along different crystallographic planes. Among different polymorphs, we found that the α polymorphs (α-C2S) has the largest Peierls stress, corresponding to the most brittle polymorph, which make it attractive for grinding processes. Interestingly, our analyses indicate that this polymorphs has the lowest dislocation core energy, making it ideal for reactivity and crystal growth. Generally, we identified the following order in terms of grinding efficiency based on screw dislocation analysis, α-C2S > αH-C2S > αL-C2S > β-C2S > γ-C2S, and the following order in term of reactivity, α -C2S > αL-C2S > γ-C2S > αH-C2S > β-C2S. This information, combined with other deformation-based mechanisms, such as twinning and edge dislocation, can provide crucial insights and guiding hypotheses for experimentalists to tune the cement grinding mechanisms and reactivity processes for an overall optimum solution with regard to both energy consumption and performance. Our findings significantly broaden the spectrum of strategies for leveraging both crystallographic directions and crystal symmetry to concurrently modulate mechanics and crystal growth processes within an identical chemical composition.

摘要

确定低对称氧化物的原子结构以及缺陷对其性能的影响长期以来一直是工程领域的追求。在此,我们聚焦于作为模型体系的二硅酸钙(Ca2SiO3)的五种热力学可逆单斜和正交多晶型物——一种关键的水泥成分——并使用原子模拟来揭示沿不同晶面的螺旋位错核心能量、非平面核心结构和派尔斯应力之间的相互作用。在不同的多晶型物中,我们发现α多晶型物(α-C2S)具有最大的派尔斯应力,对应于最脆的多晶型物,这使其对研磨过程具有吸引力。有趣的是,我们的分析表明这种多晶型物具有最低的位错核心能量,使其成为反应性和晶体生长的理想选择。一般来说,基于螺旋位错分析,我们确定了以下研磨效率顺序:α-C2S > αH-C2S > αL-C2S > β-C2S > γ-C2S,以及以下反应性顺序:α -C2S > αL-C2S > γ-C2S > αH-C2S > β-C2S。这些信息与其他基于变形的机制(如孪生和刃型位错)相结合,可以为实验人员提供关键的见解和指导性假设,以调整水泥研磨机制和反应过程,从而在能耗和性能方面实现整体最优解决方案。我们的发现显著拓宽了利用晶体学方向和晶体对称性同时调节相同化学成分内的力学和晶体生长过程的策略范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验