Biernacki Joseph J, Bullard Jeffrey W, Sant Gaurav, Banthia Nemkumar, Brown Kevin, Glasser Fredrik P, Jones Scott, Ley Tyler, Livingston Richard, Nicoleau Luc, Olek Jan, Sanchez Florence, Shahsavari Rouzbeh, Stutzman Paul E, Sobolev Konstantine, Prater Tracie
Tennessee Technological University, Cookeville, TN.
National Institute of Standards and Technology (NIST), Gaithersburg, MD.
J Am Ceram Soc. 2017 Jul;100(7):2746-2773. doi: 10.1111/jace.14948. Epub 2017 May 22.
In a book published in 1906, Richard Meade outlined the history of portland cement up to that point. Since then there has been great progress in portland cement-based construction materials technologies brought about by advances in the materials science of composites and the development of chemical additives (admixtures) for applications. The resulting functionalities, together with its economy and the sheer abundance of its raw materials, have elevated ordinary portland cement (OPC) concrete to the status of most used synthetic material on Earth. While the 20 century was characterized by the emergence of computer technology, computational science and engineering, and instrumental analysis, the fundamental composition of portland cement has remained surprisingly constant. And, although our understanding of ordinary portland cement (OPC) chemistry has grown tremendously, the intermediate steps in hydration and the nature of calcium silicate hydrate (C-S-H), the major product of OPC hydration, remain clouded in uncertainty. Nonetheless, the century also witnessed great advances in the materials technology of cement despite the uncertain understanding of its most fundamental components. Unfortunately, OPC also has a tremendous consumption-based environmental impact, and concrete made from OPC has a poor strength-to-weight ratio. If these challenges are not addressed, the dominance of OPC could wane over the next 100 years. With this in mind, this paper envisions what the 21 century holds in store for OPC in terms of the driving forces that will shape our continued use of this material. Will a new material replace OPC, and concrete as we know it today, as the preeminent infrastructure construction material?
在1906年出版的一本书中,理查德·米德概述了当时波特兰水泥的历史。从那时起,由于复合材料材料科学的进步以及用于应用的化学添加剂(外加剂)的发展,波特兰水泥基建筑材料技术取得了巨大进展。由此产生的功能,连同其经济性和原材料的丰富性,已将普通波特兰水泥(OPC)混凝土提升到地球上使用最广泛的合成材料的地位。虽然20世纪的特点是计算机技术、计算科学与工程以及仪器分析的出现,但波特兰水泥的基本成分却惊人地保持不变。而且,尽管我们对普通波特兰水泥(OPC)化学的理解有了巨大的增长,但水化的中间步骤以及OPC水化的主要产物硅酸钙水合物(C-S-H)的性质仍笼罩在不确定性之中。尽管如此,尽管对其最基本成分的理解尚不确定,但本世纪水泥材料技术仍取得了巨大进展。不幸的是,OPC也对环境造成了巨大的基于消耗的影响,并且由OPC制成的混凝土的强度重量比很差。如果这些挑战得不到解决,OPC的主导地位可能会在未来100年内减弱。考虑到这一点,本文设想了21世纪在塑造我们继续使用这种材料的驱动力方面,OPC将面临的情况。一种新材料会取代OPC以及我们今天所知的混凝土,成为卓越的基础设施建设材料吗?