Yamamoto Kazutoshi, Pearcy Paige, Lee Dong-Kuk, Yu Changsu, Im Sang-Choul, Waskell Lucy, Ramamoorthy Ayyalusamy
Department of Chemistry and Biophysics, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States.
Langmuir. 2015 Feb 3;31(4):1496-504. doi: 10.1021/la5043876. Epub 2015 Jan 17.
Three-dimensional structure determination of membrane proteins is important to fully understand their biological functions. However, obtaining a high-resolution structure has been a major challenge mainly due to the difficulties in retaining the native folding and function of membrane proteins outside of the cellular membrane environment. These challenges are acute if the protein contains a large soluble domain, as it needs bulk water unlike the transmembrane domains of an integral membrane protein. For structural studies on such proteins either by nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallography, bicelles have been demonstrated to be superior to conventional micelles, yet their temperature restrictions attributed to their thermal instabilities are a major disadvantage. Here, we report an approach to overcome this drawback through searching for an optimum combination of bicellar compositions. We demonstrate that bicelles composed of 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholin (DHepPC), without utilizing additional stabilizing chemicals, are quite stable and are resistant to temperature variations. These temperature-resistant bicelles have a robust bicellar phase and magnetic alignment over a broad range of temperatures, between -15 and 80 °C, retain the native structure of a membrane protein, and increase the sensitivity of solid-state NMR experiments performed at low temperatures. Advantages of two-dimensional separated-local field (SLF) solid-state NMR experiments at a low temperature are demonstrated on magnetically aligned bicelles containing an electron carrier membrane protein, cytochrome b5. Morphological information on different DDPC-based bicellar compositions, varying q ratio/size, and hydration levels obtained from (31)P NMR experiments in this study is also beneficial for a variety of biophysical and spectroscopic techniques, including solution NMR and magic-angle-spinning (MAS) NMR for a wide range of temperatures.
膜蛋白的三维结构测定对于全面理解其生物学功能至关重要。然而,获得高分辨率结构一直是一项重大挑战,主要原因是在细胞膜外环境中保留膜蛋白的天然折叠和功能存在困难。如果蛋白质包含一个大的可溶性结构域,这些挑战就会更加严峻,因为与整合膜蛋白的跨膜结构域不同,它需要大量的水。对于通过核磁共振(NMR)光谱或X射线晶体学对这类蛋白质进行结构研究,已证明双分子层囊泡比传统胶束更具优势,但其由于热不稳定性导致的温度限制是一个主要缺点。在此,我们报告一种通过寻找双分子层囊泡组成的最佳组合来克服这一缺点的方法。我们证明,由1,2 - 二癸酰 - sn - 甘油 - 3 - 磷酸胆碱(DDPC)和1,2 - 二庚酰 - sn - 甘油 - 3 - 磷酸胆碱(DHepPC)组成的双分子层囊泡,无需使用额外的稳定化学物质,就相当稳定且能抵抗温度变化。这些耐温双分子层囊泡在 - 15至80°C的广泛温度范围内具有稳定的双分子层囊泡相和磁取向,保留膜蛋白的天然结构,并提高了在低温下进行的固态NMR实验的灵敏度。在含有电子载体膜蛋白细胞色素b5的磁取向双分子层囊泡上,展示了低温下二维分离局部场(SLF)固态NMR实验的优势。本研究通过(31)P NMR实验获得的关于不同基于DDPC的双分子层囊泡组成(不同的q比/尺寸和水合水平)的形态学信息,对于包括溶液NMR和魔角旋转(MAS)NMR在内的各种生物物理和光谱技术在广泛温度范围内的应用也很有益处。