Biophysics and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States.
Langmuir. 2014 Feb 18;30(6):1622-9. doi: 10.1021/la404331t. Epub 2014 Feb 4.
Bicelles are increasingly used as model membranes to suitably mimic the biological cell membrane for biophysical and biochemical studies by a variety of techniques including NMR and X-ray crystallography. Recent NMR studies have successfully utilized bicelles for atomic-resolution structural and dynamic studies of antimicrobial peptides, amyloid peptides, and membrane-bound proteins. Though bicelles composed with several different types of lipids and detergents have been reported, the NMR requirement of magnetic alignment of bicelles limits the temperature range in which they can be used and subsequently their composition. Because of this restriction, low-temperature experiments desirable for heat-sensitive membrane proteins have not been conducted because bicelles could not be aligned. In this study, we characterize the magnetic alignment of bicelles with various compositions for a broad range of temperatures using (31)P static NMR spectroscopy in search of temperature-resistant bicelles. Our systematic investigation identified a temperature range of magnetic alignment for bicelles composed of 4:1 DLPC:DHexPC, 4:1:0.2 DLPC:DHexPC:cholesterol, 4:1:0.13 DLPC:DHexPC:CTAB, 4:1:0.13:0.2 DLPC:DHexPC:CTAB:cholesterol, and 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate. The amount of cholesterol-3-sulfate used was based on mole percent and was varied in order to determine the optimal amount. Our results indicate that the presence of 75 wt % or more water is essential to achieve maximum magnetic alignment, while the presence of cholesterol and cholesterol-3-sulfate stabilizes the alignment at extreme temperatures and the positively charged CTAB avoids the mixing of bicelles. We believe that the use of magnetically aligned 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate bicelles at as low as -15 °C would pave avenues to study the structure, dynamics, and membrane orientation of heat-sensitive proteins such as cytochrome P450 and could also be useful to investigate protein-protein interactions in a membrane environment.
双分子层囊泡越来越多地被用作模型膜,通过各种技术(包括 NMR 和 X 射线晶体学)来适当地模拟生物细胞膜,进行生物物理和生物化学研究。最近的 NMR 研究已经成功地利用双分子层囊泡对抗菌肽、淀粉样肽和膜结合蛋白进行原子分辨率的结构和动力学研究。虽然已经报道了由几种不同类型的脂质和去污剂组成的双分子层囊泡,但双分子层囊泡的 NMR 磁定向要求限制了它们可以使用的温度范围及其组成。由于这种限制,对于热敏膜蛋白的低温实验尚未进行,因为双分子层囊泡无法定向。在这项研究中,我们使用(31)P 静态 NMR 光谱法对具有各种组成的双分子层囊泡在很宽的温度范围内进行磁定向表征,以寻找耐温的双分子层囊泡。我们的系统研究确定了由 4:1 DLPC:DHexPC、4:1:0.2 DLPC:DHexPC:胆固醇、4:1:0.13 DLPC:DHexPC:CTAB、4:1:0.13:0.2 DLPC:DHexPC:CTAB:胆固醇和 4:1:0.4 DLPC:DHexPC:胆固醇-3-硫酸盐组成的双分子层囊泡的磁定向温度范围。胆固醇-3-硫酸盐的用量基于摩尔百分比,并进行了变化,以确定最佳用量。我们的结果表明,存在 75wt%或更多的水对于实现最大磁定向是必不可少的,而胆固醇和胆固醇-3-硫酸盐的存在在极端温度下稳定定向,带正电荷的 CTAB 避免了双分子层囊泡的混合。我们相信,在低至-15°C 的情况下使用磁定向的 4:1:0.4 DLPC:DHexPC:胆固醇-3-硫酸盐双分子层囊泡将为研究热敏感蛋白(如细胞色素 P450)的结构、动力学和膜取向开辟途径,也可用于研究膜环境中的蛋白质-蛋白质相互作用。