Esquivel-Gómez J, Stevens-Navarro E, Pineda-Rico U, Acosta-Elias J
1] Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), México [2] Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí (UASLP), México.
Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), México.
Sci Rep. 2015 Jan 8;5:7670. doi: 10.1038/srep07670.
Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1.
许多增长模型已被发表用于对真实复杂网络的行为进行建模。这些模型能够重现此类网络的若干拓扑特性。然而,在大多数这些增长模型中,添加到网络中的节点的出边数量(即出度)是恒定的,也就是说网络中的所有节点诞生时具有相同数量的出边。在其他模型中,所得出度分布按泊松分布或指数分布衰减。然而,已经发现,在真实复杂网络中,出度分布按幂律衰减。为了获得具有幂律行为的出度分布,已经提出了一些模型。这项工作引入了一种新模型,该模型能够获得出度分布按幂律衰减且指数在0到1范围内的情况。