Ronellenfitsch Henrik, Liesche Johannes, Jensen Kaare H, Holbrook N Michele, Schulz Alexander, Katifori Eleni
Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
Proc Biol Sci. 2015 Feb 22;282(1801):20141863. doi: 10.1098/rspb.2014.1863.
The phloem vascular system facilitates transport of energy-rich sugar and signalling molecules in plants, thus permitting long-range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated by differences in sugar concentration between distal parts of the plant. The phloem is an intricate distribution system, and many questions about its regulation and structural diversity remain unanswered. Here, we investigate the phloem structure in the simplest possible geometry: a linear leaf, found, for example, in the needles of conifer trees. We measure the phloem structure in four tree species representing a diverse set of habitats and needle sizes, from 1 (Picea omorika) to 35 cm (Pinus palustris). We show that the phloem shares common traits across these four species and find that the size of its conductive elements obeys a power law. We present a minimal model that accounts for these common traits and takes into account the transport strategy and natural constraints. This minimal model predicts a power law phloem distribution consistent with transport energy minimization, suggesting that energetics are more important than translocation speed at the leaf level.
韧皮部维管系统促进了植物中富含能量的糖类和信号分子的运输,从而使生物体能够进行远距离通讯,并使根和果实等非光合作用器官得以生长。这种流动是由渗透压驱动的,渗透压是由植物远端部分糖浓度的差异产生的。韧皮部是一个复杂的分布系统,关于其调节和结构多样性的许多问题仍未得到解答。在这里,我们研究最简单几何形状的韧皮部结构:例如在针叶树的针叶中发现的线性叶片。我们测量了代表不同栖息地和针叶大小的四种树种的韧皮部结构,针叶长度从1厘米(塞尔维亚云杉)到35厘米(湿地松)不等。我们表明,这四个物种的韧皮部具有共同特征,并发现其传导元件的大小服从幂律。我们提出了一个最小模型,该模型解释了这些共同特征,并考虑了运输策略和自然限制。这个最小模型预测了与运输能量最小化相一致的幂律韧皮部分布,表明在叶片水平上,能量学比转运速度更重要。