Suppr超能文献

针叶树韧皮部结构的缩放与光合产物运输的最优性

Scaling of phloem structure and optimality of photoassimilate transport in conifer needles.

作者信息

Ronellenfitsch Henrik, Liesche Johannes, Jensen Kaare H, Holbrook N Michele, Schulz Alexander, Katifori Eleni

机构信息

Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany

Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.

出版信息

Proc Biol Sci. 2015 Feb 22;282(1801):20141863. doi: 10.1098/rspb.2014.1863.

Abstract

The phloem vascular system facilitates transport of energy-rich sugar and signalling molecules in plants, thus permitting long-range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated by differences in sugar concentration between distal parts of the plant. The phloem is an intricate distribution system, and many questions about its regulation and structural diversity remain unanswered. Here, we investigate the phloem structure in the simplest possible geometry: a linear leaf, found, for example, in the needles of conifer trees. We measure the phloem structure in four tree species representing a diverse set of habitats and needle sizes, from 1 (Picea omorika) to 35 cm (Pinus palustris). We show that the phloem shares common traits across these four species and find that the size of its conductive elements obeys a power law. We present a minimal model that accounts for these common traits and takes into account the transport strategy and natural constraints. This minimal model predicts a power law phloem distribution consistent with transport energy minimization, suggesting that energetics are more important than translocation speed at the leaf level.

摘要

韧皮部维管系统促进了植物中富含能量的糖类和信号分子的运输,从而使生物体能够进行远距离通讯,并使根和果实等非光合作用器官得以生长。这种流动是由渗透压驱动的,渗透压是由植物远端部分糖浓度的差异产生的。韧皮部是一个复杂的分布系统,关于其调节和结构多样性的许多问题仍未得到解答。在这里,我们研究最简单几何形状的韧皮部结构:例如在针叶树的针叶中发现的线性叶片。我们测量了代表不同栖息地和针叶大小的四种树种的韧皮部结构,针叶长度从1厘米(塞尔维亚云杉)到35厘米(湿地松)不等。我们表明,这四个物种的韧皮部具有共同特征,并发现其传导元件的大小服从幂律。我们提出了一个最小模型,该模型解释了这些共同特征,并考虑了运输策略和自然限制。这个最小模型预测了与运输能量最小化相一致的幂律韧皮部分布,表明在叶片水平上,能量学比转运速度更重要。

相似文献

3
Maintenance of carbohydrate transport in tall trees.高大树木中碳水化合物运输的维持。
Nat Plants. 2017 Dec;3(12):965-972. doi: 10.1038/s41477-017-0064-y. Epub 2017 Dec 4.
4
Optimality of the Münch mechanism for translocation of sugars in plants.植物中糖转移的 Münch 机制的最优性。
J R Soc Interface. 2011 Aug 7;8(61):1155-65. doi: 10.1098/rsif.2010.0578. Epub 2011 Jan 18.
5
The mechanism of sugar export from long conifer needles.针叶树长针叶中糖分输出的机制。
New Phytol. 2021 Jun;230(5):1911-1924. doi: 10.1111/nph.17302. Epub 2021 Apr 26.
9
Phloem networks in leaves.叶片中的韧皮部网络。
Curr Opin Plant Biol. 2018 Jun;43:29-35. doi: 10.1016/j.pbi.2017.12.007. Epub 2018 Jan 4.

引用本文的文献

本文引用的文献

3
Phloem transport and drought.韧皮部运输与干旱。
J Exp Bot. 2014 Apr;65(7):1751-9. doi: 10.1093/jxb/ert467. Epub 2014 Jan 15.
5
Leaf vasculature in Zea mays L.玉米叶片维管束
Planta. 1985 Jul;164(4):448-58. doi: 10.1007/BF00395960.
6
Physical limits to leaf size in tall trees.高大树木中叶片大小的物理限制。
Phys Rev Lett. 2013 Jan 4;110(1):018104. doi: 10.1103/PhysRevLett.110.018104.
7
Global convergence in the vulnerability of forests to drought.森林对干旱脆弱性的全球趋同。
Nature. 2012 Nov 29;491(7426):752-5. doi: 10.1038/nature11688. Epub 2012 Nov 21.
8
Quantifying loopy network architectures.量化有环网络架构。
PLoS One. 2012;7(6):e37994. doi: 10.1371/journal.pone.0037994. Epub 2012 Jun 6.
9
Universality of phloem transport in seed plants.韧皮部运输在种子植物中的普遍性。
Plant Cell Environ. 2012 Jun;35(6):1065-76. doi: 10.1111/j.1365-3040.2011.02472.x. Epub 2012 Jan 6.
10
The constructal law and the evolution of design in nature.结构定律与自然界的设计演化。
Phys Life Rev. 2011 Oct;8(3):209-40. doi: 10.1016/j.plrev.2011.05.010. Epub 2011 May 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验