Suppr超能文献

基于多变量曲线分辨-交替最小二乘法(MCR-ALS)的生物材料振动光谱图像分析。

Vibrational spectroscopic image analysis of biological material using multivariate curve resolution-alternating least squares (MCR-ALS).

机构信息

Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.

Institut de Diagnòstic Ambiental i Estudis de l'Aigua-Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain.

出版信息

Nat Protoc. 2015 Feb;10(2):217-40. doi: 10.1038/nprot.2015.008. Epub 2015 Jan 8.

Abstract

Raman and Fourier transform IR (FTIR) microspectroscopic images of biological material (tissue sections) contain detailed information about their chemical composition. The challenge lies in identifying changes in chemical composition, as well as locating and assigning these changes to different conditions (pathology, anatomy, environmental or genetic factors). Multivariate data analysis techniques are ideal for decrypting such information from the data. This protocol provides a user-friendly pipeline and graphical user interface (GUI) for data pre-processing and unmixing of pixel spectra into their contributing pure components by multivariate curve resolution-alternating least squares (MCR-ALS) analysis. The analysis considers the full spectral profile in order to identify the chemical compounds and to visualize their distribution across the sample to categorize chemically distinct areas. Results are rapidly achieved (usually <30-60 min per image), and they are easy to interpret and evaluate both in terms of chemistry and biology, making the method generally more powerful than principal component analysis (PCA) or heat maps of single-band intensities. In addition, chemical and biological evaluation of the results by means of reference matching and segmentation maps (based on k-means clustering) is possible.

摘要

拉曼和傅里叶变换红外(FTIR)生物材料(组织切片)的微光谱图像包含有关其化学成分的详细信息。挑战在于识别化学成分的变化,以及定位和将这些变化分配到不同的条件(病理学、解剖学、环境或遗传因素)。多元数据分析技术是从数据中解密此类信息的理想方法。该协议提供了一个用户友好的流水线和图形用户界面(GUI),用于通过多元曲线分辨交替最小二乘法(MCR-ALS)分析对像素光谱进行数据预处理和混合到其贡献的纯成分中。该分析考虑了整个光谱轮廓,以识别化合物,并可视化它们在样品中的分布,从而对化学上不同的区域进行分类。结果可以快速获得(通常每张图像 <30-60 分钟),并且易于解释和评估,无论是在化学还是生物学方面,这使得该方法通常比主成分分析(PCA)或单波段强度的热图更强大。此外,还可以通过参考匹配和基于 K-均值聚类的分割图对结果进行化学和生物学评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验