Kettle A J, Winterbourn C C
Department of Pathology, Christchurch School of Medicine, Christchurch Hospital, New Zealand.
Biochem J. 1989 Nov 1;263(3):823-8. doi: 10.1042/bj2630823.
Stimulated neutrophils discharge large quantities of superoxide (O2.-), which dismutates to form H2O2. In combination with Cl-, H2O2 is converted into the potent oxidant hypochlorous acid (HOCl) by the haem enzyme myeloperoxidase. We have used an H2O2 electrode to monitor H2O2 uptake by myeloperoxidase, and have shown that in the presence of Cl- this accurately represents production of HOCl. Monochlorodimedon, which is routinely used to assay production of HOCl, inhibited H2O2 uptake by 95%. This result confirms that monochlorodimedon inhibits myeloperoxidase, and that the monochlorodimedon assay grossly underestimates the activity of myeloperoxidase. With 10 microM-H2O2 and 100 mM-Cl-, myeloperoxidase had a neutral pH optimum. Increasing the H2O2 concentration to 100 microM lowered the pH optimum to pH 6.5. Above the pH optimum there was a burst of H2O2 uptake that rapidly declined due to accumulation of Compound II. High concentrations of H2O2 inhibited myeloperoxidase and promoted the formation of Compound II. These effects of H2O2 were decreased at higher concentrations of Cl-. We propose that H2O2 competes with Cl- for Compound I and reduces it to Compound II, thereby inhibiting myeloperoxidase. Above pH 6.5, O2.- generated by xanthine oxidase and acetaldehyde prevented H2O2 from inhibiting myeloperoxidase, increasing the initial rate of H2O2 uptake. O2.- allowed myeloperoxidase to function optimally with 100 microM-H2O2 at pH 7.0. This occurred because, as previously demonstrated, O2.- prevents Compound II from accumulating by reducing it to ferric myeloperoxidase. In contrast, at pH 6.0, where Compound II did not accumulate, O2.- retarded the uptake of H2O2. We propose that by generating O2.- neutrophils prevent H2O2 and other one-electron donors from inhibiting myeloperoxidase, and ensure that this enzyme functions optimally at neutral pH.
受刺激的中性粒细胞会释放大量超氧化物(O2.-),超氧化物歧化后形成H2O2。H2O2与Cl-结合后,会被血红素酶髓过氧化物酶转化为强效氧化剂次氯酸(HOCl)。我们使用H2O2电极监测髓过氧化物酶对H2O2的摄取,并表明在有Cl-存在的情况下,这准确代表了HOCl的产生。常用于检测HOCl产生的二氯二甲基酮抑制了95%的H2O2摄取。这一结果证实二氯二甲基酮抑制髓过氧化物酶,并且二氯二甲基酮检测法严重低估了髓过氧化物酶的活性。在10微摩尔/升H2O2和100毫摩尔/升Cl-的条件下,髓过氧化物酶的最适pH值为中性。将H2O2浓度提高到100微摩尔/升会使最适pH值降至pH 6.5。在最适pH值以上,会出现一阵H2O2摄取高峰,但由于化合物II的积累,该高峰迅速下降。高浓度的H2O2会抑制髓过氧化物酶并促进化合物II的形成。在较高浓度的Cl-存在时,H2O2的这些作用会减弱。我们认为H2O2与Cl-竞争化合物I并将其还原为化合物II,从而抑制髓过氧化物酶。在pH 6.5以上,黄嘌呤氧化酶和乙醛产生的O2.-可防止H2O2抑制髓过氧化物酶,提高H2O2摄取的初始速率。O2.-使髓过氧化物酶在pH 7.0时能以100微摩尔/升H2O2实现最佳功能。之所以会这样,是因为如先前所示,O2.-可通过将化合物II还原为铁离子形式的髓过氧化物酶来防止其积累。相反,在pH 6.0时,化合物II不会积累,O2.-会延缓H2O2的摄取。我们认为中性粒细胞通过产生O2.-可防止H2O2和其他单电子供体抑制髓过氧化物酶,并确保该酶在中性pH条件下发挥最佳功能。