Suppr超能文献

使用单通道脑电图传感器进行自动睡眠起始检测。

Automatic sleep onset detection using single EEG sensor.

作者信息

Ng Andrew Keong

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2265-8. doi: 10.1109/EMBC.2014.6944071.

Abstract

Sleep has been shown to be imperative for the health and well-being of an individual. To design intelligent sleep management tools, such as the music-induce sleep-aid device, automatic detection of sleep onset is critical. In this work, we propose a simple yet accurate method for sleep onset prediction, which merely relies on Electroencephalogram (EEG) signal acquired from a single frontal electrode in a wireless headband. The proposed method first extracts energy power ratio of theta (4-8Hz) and alpha (8-12Hz) bands along a 3-second shifting window, then calculates the slow wave of each frequency band along the time domain. The resulting slow waves are then fed to a rule-based engine for sleep onset detection. To evaluate the effectiveness of the approach, polysomnographic (PSG) and headband EEG signals were obtained from 20 healthy adults, each of which underwent 2 sessions of sleep events. In total, data from 40 sleep events were collected. Each recording was then analyzed offline by a PSG technologist via visual observation of PSG waveforms, who annotated sleep stages N1 and N2 by using the American Academy of Sleep Medicine (AASM) scoring rules. Using this as the gold standard, our approach achieved a 87.5% accuracy for sleep onset detection. The result is better or at least comparable to the other state of the art methods which use either multi-or single- channel based data. The approach has laid down the foundations for our future work on developing intelligent sleep aid devices.

摘要

睡眠已被证明对个人的健康和幸福至关重要。为了设计智能睡眠管理工具,如音乐助眠设备,睡眠起始的自动检测至关重要。在这项工作中,我们提出了一种简单而准确的睡眠起始预测方法,该方法仅依赖于从无线头带中的单个前额电极采集的脑电图(EEG)信号。所提出的方法首先在一个3秒的滑动窗口中提取θ(4 - 8Hz)和α(8 - 12Hz)频段的能量功率比,然后沿时域计算每个频段的慢波。然后将得到的慢波输入到基于规则的引擎中进行睡眠起始检测。为了评估该方法的有效性,从20名健康成年人那里获取了多导睡眠图(PSG)和头带EEG信号,每人进行了2次睡眠事件。总共收集了40次睡眠事件的数据。然后,PSG技术人员通过目视观察PSG波形对每次记录进行离线分析,他们使用美国睡眠医学学会(AASM)的评分规则对头睡眠阶段N1和N2进行注释。以此作为金标准,我们的方法在睡眠起始检测方面达到了87.5%的准确率。该结果优于或至少与其他使用多通道或单通道数据的现有方法相当。该方法为我们未来开发智能助眠设备的工作奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验