Suppr超能文献

基于单通道 EEG 头戴式设备和腕部活动记录仪的两种组合,对健康成年人的睡眠分期分类模型进行验证。

Validation of a sleep staging classification model for healthy adults based on two combinations of a single-channel EEG headband and wrist actigraphy.

机构信息

Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil.

SleepUp Tecnologia em Saúde Ltda, São Caetano do Sul, Brazil.

出版信息

J Clin Sleep Med. 2024 Jun 1;20(6):983-990. doi: 10.5664/jcsm.11082.

Abstract

STUDY OBJECTIVES

The aim of this study was to develop a sleep staging classification model capable of accurately performing on different wearable devices.

METHODS

Twenty-three healthy participants underwent a full-night type I polysomnography and used two device combinations: (A) flexible single-channel electroencephalogram (EEG) headband + actigraphy (n = 12) and (B) rigid single-channel EEG headband + actigraphy (n = 11). The signals were segmented into 30-second epochs according to polysomnographic stages (scored by a board-certified sleep technologist; model ground truth) and 18 frequency and time features were extracted. The model consisted of an ensemble of bagged decision trees. Bagging refers to bootstrap aggregation to reduce overfitting and improve generalization. To evaluate the model, a training dataset under 5-fold cross-validation and an 80-20% dataset split was used. The headbands were also evaluated without the actigraphy feature. Participants also completed a usability evaluation (comfort, pain while sleeping, and sleep disturbance).

RESULTS

Combination A had an F1-score of 98.4% and the flexible headband alone of 97.7% (error rate for N1: combination A = 9.8%; flexible headband alone = 15.7%). Combination B had an F1-score of 96.9% and the rigid headband alone of 95.3% (error rate for N1: combination B = 17.0%; rigid headband alone = 27.7%); in both, N1 was more confounded with N2.

CONCLUSIONS

We developed an accurate sleep classification model based on a single-channel EEG device, and actigraphy was not an important feature of the model. Both headbands were found to be useful, with the rigid one being more disruptive to sleep. Future research can improve our results by applying the developed model in a population with sleep disorders.

CLINICAL TRIAL REGISTRATION

Registry: ClinicalTrials.gov; Name: Actigraphy, Wearable EEG Band and Smartphone for Sleep Staging; URL: https://clinicaltrials.gov/study/NCT04943562; Identifier: NCT04943562.

CITATION

Melo MC, Vallim JRS, Garbuio S, et al. Validation of a sleep staging classification model for healthy adults based on 2 combinations of a single-channel EEG headband and wrist actigraphy. . 2024;20(6):983-990.

摘要

研究目的

本研究旨在开发一种能够在不同可穿戴设备上准确进行睡眠分期的分类模型。

方法

23 名健康参与者接受了一整夜的 I 型多导睡眠图检查,并使用了两种设备组合:(A)灵活的单通道脑电图(EEG)头带+活动记录仪(n=12)和(B)刚性单通道 EEG 头带+活动记录仪(n=11)。信号根据多导睡眠图分期(由经过认证的睡眠技术专家评分;模型地面真实)分为 30 秒的段,并提取了 18 个频率和时间特征。模型由袋装决策树的集合组成。装袋是指自举聚合,以减少过拟合并提高泛化能力。为了评估模型,使用了 5 折交叉验证的训练数据集和 80-20%的数据集分割。还评估了没有活动记录仪特征的头带。参与者还完成了使用舒适度、睡眠时疼痛和睡眠干扰的可用性评估。

结果

组合 A 的 F1 得分为 98.4%,而单独使用灵活的头带时为 97.7%(N1 的错误率:组合 A=9.8%;单独使用灵活的头带=15.7%)。组合 B 的 F1 得分为 96.9%,而单独使用刚性头带时为 95.3%(N1 的错误率:组合 B=17.0%;单独使用刚性头带=27.7%);在这两种情况下,N1 与 N2 的混淆程度都更高。

结论

我们开发了一种基于单通道 EEG 设备的准确睡眠分类模型,而活动记录仪并不是模型的重要特征。两个头带都被证明是有用的,刚性头带对睡眠的干扰更大。未来的研究可以通过在患有睡眠障碍的人群中应用开发的模型来改进我们的结果。

临床试验注册

注册处:ClinicalTrials.gov;名称:活动记录仪、可穿戴 EEG 带和智能手机用于睡眠分期;网址:https://clinicaltrials.gov/study/NCT04943562;标识符:NCT04943562。

引用

Melo MC, Vallim JRS, Garbuio S, et al. Validation of a sleep staging classification model for healthy adults based on 2 combinations of a single-channel EEG headband and wrist actigraphy.. 2024;20(6):983-990.

相似文献

7
AI-Driven sleep staging from actigraphy and heart rate.基于动作和心率的人工智能睡眠分期。
PLoS One. 2023 May 17;18(5):e0285703. doi: 10.1371/journal.pone.0285703. eCollection 2023.

引用本文的文献

本文引用的文献

2
Staging study of single-channel sleep EEG signals based on data augmentation.基于数据增强的单通道睡眠 EEG 信号分期研究。
Front Public Health. 2022 Nov 23;10:1038742. doi: 10.3389/fpubh.2022.1038742. eCollection 2022.
4
Editorial: Machine Learning and Wearable Technology in Sleep Medicine.社论:睡眠医学中的机器学习与可穿戴技术
Front Digit Health. 2022 Mar 2;4:845879. doi: 10.3389/fdgth.2022.845879. eCollection 2022.
5
Evaluation of a Single-Channel EEG-Based Sleep Staging Algorithm.基于单通道 EEG 的睡眠分期算法评估。
Int J Environ Res Public Health. 2022 Mar 1;19(5):2845. doi: 10.3390/ijerph19052845.
7
Towards More Accurate Automatic Sleep Staging via Deep Transfer Learning.通过深度迁移学习实现更准确的自动睡眠分期。
IEEE Trans Biomed Eng. 2021 Jun;68(6):1787-1798. doi: 10.1109/TBME.2020.3020381. Epub 2021 May 21.
8
Wearable Sleep Technology in Clinical and Research Settings.可穿戴睡眠技术在临床和研究环境中的应用。
Med Sci Sports Exerc. 2019 Jul;51(7):1538-1557. doi: 10.1249/MSS.0000000000001947.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验