Suppr超能文献

基于时频分布特征的自动新生儿脑电图癫痫检测的稳健性

Robustness of time frequency distribution based features for automated neonatal EEG seizure detection.

作者信息

Nagaraj S B, Stevenson N J, Marnane W P, Boylan G B, Lightbody G

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2829-32. doi: 10.1109/EMBC.2014.6944212.

Abstract

In this paper we examined the robustness of a feature-set based on time-frequency distributions (TFDs) for neonatal EEG seizure detection. This feature-set was originally proposed in literature for neonatal seizure detection using a support vector machine (SVM). We tested the performance of this feature-set with a smoothed Wigner-Ville distribution and modified B distribution as the underlying TFDs. The seizure detection system using time-frequency signal and image processing features from the TFD of the EEG signal using modified B distribution was able to achieve a median receiver operator characteristic area of 0.96 (IQR 0.91-0.98) tested on a large clinical dataset of 826 h of EEG data from 18 full-term newborns with 1389 seizures. The mean AUC was 0.93.

摘要

在本文中,我们检验了基于时频分布(TFD)的特征集用于新生儿脑电图癫痫检测的稳健性。该特征集最初是在文献中提出的,用于使用支持向量机(SVM)进行新生儿癫痫检测。我们以平滑维格纳-威利分布和修正B分布作为基础时频分布,测试了该特征集的性能。使用修正B分布从脑电图信号的时频分布中提取时频信号和图像处理特征的癫痫检测系统,在来自18名足月新生儿的826小时脑电图数据的大型临床数据集上进行测试,该数据集包含1389次癫痫发作,其能够实现中位数接收者操作特征面积为0.96(四分位距0.91 - 0.98)。平均AUC为0.93。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验