Stavisky Sergey D, Kao Jonathan C, Nuyujukian Paul, Ryu Stephen I, Shenoy Krishna V
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3041-4. doi: 10.1109/EMBC.2014.6944264.
The best-performing brain-machine interfaces (BMIs) to date decode movement intention from intracortically recorded spikes, but these signals may be lost over time. A way to increase the useful lifespan of BMIs is to make more comprehensive use of available neural signals. Recent studies have demonstrated that the local field potential (LFP), a potentially more robust signal, can also be used to control a BMI. However, LFP-driven performance has fallen short of the best spikes-driven performance. Here we report a biomimetic BMI driven by low-frequency LFP that enabled a rhesus monkey to acquire and hold randomly placed targets with 99% success rate. Although LFP-driven performance was still worse than when decoding spikes, to the best of our knowledge this represents the highest-performing LFP-based BMI. We also demonstrate a new hybrid BMI that decodes cursor velocity using both spikes and LFP. This hybrid decoder improved performance over spikes-only decoding. Our results suggest that LFP can complement spikes when spikes are available or provide an alternative control signal if spikes are absent.
迄今为止,性能最佳的脑机接口(BMI)是从皮层内记录的尖峰信号中解码运动意图,但这些信号可能会随着时间的推移而丢失。延长BMI使用寿命的一种方法是更全面地利用可用的神经信号。最近的研究表明,局部场电位(LFP)这一潜在更稳定的信号也可用于控制BMI。然而,基于LFP的性能仍不及最佳的基于尖峰信号的性能。在此,我们报告一种由低频LFP驱动的仿生BMI,它使一只恒河猴能够以99%的成功率获取并保持随机放置的目标。尽管基于LFP的性能仍比解码尖峰信号时要差,但据我们所知,这代表了性能最高的基于LFP的BMI。我们还展示了一种新的混合BMI,它同时使用尖峰信号和LFP来解码光标速度。这种混合解码器比仅使用尖峰信号的解码器性能有所提高。我们的结果表明,当有尖峰信号时,LFP可以作为补充,而在没有尖峰信号时,LFP可以提供替代的控制信号。