Suppr超能文献

Real-time prediction of respiratory motion traces for radiotherapy with ensemble learning.

作者信息

Tatinati Sivanagaraja, Veluvolu Kalyana C, Nazarpour Kianoush

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4204-7. doi: 10.1109/EMBC.2014.6944551.

Abstract

In this paper, we introduce a hybrid method for prediction of respiratory motion to overcome the inherent delay in robotic radiosurgery while treating lung tumors. The hybrid method adopts least squares support vector machine (LS-SVM) based ensemble learning approach to exploit the relative advantages of the individual methods local circular motion (LCM) with extended Kalman filter (EKF) and autoregressive moving average (ARMA) model with fading memory Kalman filter (FMKF). The efficiency the proposed hybrid approach was assessed with the real respiratory motion traces of 31 patients while treating with CyberKnife(TM). Results show that the proposed hybrid method improves the prediction accuracy by approximately 10% for prediction horizons of 460 ms compared to the existing methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验