Dürichen Robert, Wissel Tobias, Schweikard Achim
Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, Lübeck, Germany,
Int J Comput Assist Radiol Surg. 2013 Nov;8(6):1037-42. doi: 10.1007/s11548-013-0900-0. Epub 2013 May 21.
To successfully ablate moving tumors in robotic radio-surgery, it is necessary to compensate for motion of inner organs caused by respiration. This can be achieved by tracking the body surface and correlating the external movement with the tumor position as it is implemented in the CyberKnife[Formula: see text] Synchrony system. Tracking errors, originating from system immanent time delays, are typically reduced by time series prediction. Many prediction algorithms exploit autoregressive (AR) properties of the signal. Estimating the optimal model order [Formula: see text] for these algorithms constitutes a challenge often solved via grid search or prior knowledge about the signal.
Aiming at a more efficient approach instead, this study evaluates the Akaike information criterion (AIC), the corrected AIC, and the Bayesian information criterion (BIC) on the first minute of the respiratory signal. Exemplarily, we evaluated the approach for a least mean square (LMS) and a wavelet-based LMS (wLMS) predictor.
Analyzing 12 motion traces, orders estimated by AIC had the highest prediction accuracy for both prediction algorithms. Extending the investigations to 304 real motion traces, the prediction error of wLMS using AIC was found to decrease significantly by 85.1 % of the data compared to the original implementation
The overall results suggest that using AIC to estimate the model order [Formula: see text] for prediction algorithms based on AR properties is a valid method which avoids intensive grid search and leads to high prediction accuracy.
在机器人放射外科手术中成功消融移动肿瘤,有必要补偿由呼吸引起的内部器官运动。这可以通过跟踪身体表面并将外部运动与肿瘤位置相关联来实现,就像在射波刀同步系统中那样。源于系统固有时间延迟的跟踪误差通常通过时间序列预测来减少。许多预测算法利用信号的自回归(AR)特性。为这些算法估计最优模型阶数构成了一项挑战,通常通过网格搜索或关于信号的先验知识来解决。
相反,为了寻求一种更有效的方法,本研究在呼吸信号的第一分钟评估了赤池信息准则(AIC)、修正的AIC和贝叶斯信息准则(BIC)。作为示例,我们对最小均方(LMS)和基于小波的LMS(wLMS)预测器评估了该方法。
分析12条运动轨迹,AIC估计的阶数对两种预测算法都具有最高的预测精度。将研究扩展到304条真实运动轨迹,发现与原始实现相比,使用AIC的wLMS的预测误差在85.1%的数据上显著降低。
总体结果表明,使用AIC为基于AR特性的预测算法估计模型阶数是一种有效的方法,它避免了密集的网格搜索并导致高预测精度。