Suppr超能文献

闭环神经假体与片上智能:脑状态检测的回顾与低延迟机器学习模型。

Closed-Loop Neural Prostheses With On-Chip Intelligence: A Review and a Low-Latency Machine Learning Model for Brain State Detection.

出版信息

IEEE Trans Biomed Circuits Syst. 2021 Oct;15(5):877-897. doi: 10.1109/TBCAS.2021.3112756. Epub 2021 Dec 9.

Abstract

The application of closed-loop approaches in systems neuroscience and therapeutic stimulation holds great promise for revolutionizing our understanding of the brain and for developing novel neuromodulation therapies to restore lost functions. Neural prostheses capable of multi-channel neural recording, on-site signal processing, rapid symptom detection, and closed-loop stimulation are critical to enabling such novel treatments. However, the existing closed-loop neuromodulation devices are too simplistic and lack sufficient on-chip processing and intelligence. In this paper, we first discuss both commercial and investigational closed-loop neuromodulation devices for brain disorders. Next, we review state-of-the-art neural prostheses with on-chip machine learning, focusing on application-specific integrated circuits (ASIC). System requirements, performance and hardware comparisons, design trade-offs, and hardware optimization techniques are discussed. To facilitate a fair comparison and guide design choices among various on-chip classifiers, we propose a new energy-area (E-A) efficiency figure of merit that evaluates hardware efficiency and multi-channel scalability. Finally, we present several techniques to improve the key design metrics of tree-based on-chip classifiers, both in the context of ensemble methods and oblique structures. A novel Depth-Variant Tree Ensemble (DVTE) is proposed to reduce processing latency (e.g., by 2.5× on seizure detection task). We further develop a cost-aware learning approach to jointly optimize the power and latency metrics. We show that algorithm-hardware co-design enables the energy- and memory-optimized design of tree-based models, while preserving a high accuracy and low latency. Furthermore, we show that our proposed tree-based models feature a highly interpretable decision process that is essential for safety-critical applications such as closed-loop stimulation.

摘要

闭环方法在系统神经科学和治疗性刺激中的应用有望彻底改变我们对大脑的理解,并开发出新型的神经调节疗法来恢复丧失的功能。能够进行多通道神经记录、现场信号处理、快速症状检测和闭环刺激的神经假体对于实现这些新型治疗方法至关重要。然而,现有的闭环神经调节设备过于简单,缺乏足够的片上处理和智能。在本文中,我们首先讨论了用于脑疾病的商业和研究性闭环神经调节设备。接下来,我们回顾了具有片上机器学习的最先进的神经假体,重点介绍了专用集成电路 (ASIC)。讨论了系统要求、性能和硬件比较、设计权衡以及硬件优化技术。为了便于公平比较和指导各种片上分类器之间的设计选择,我们提出了一个新的能量-面积 (E-A) 效率衡量标准,用于评估硬件效率和多通道可扩展性。最后,我们提出了几种改进基于树的片上分类器关键设计指标的技术,包括在集成方法和斜结构的上下文中。提出了一种新的深度变化树集成 (DVTE) 来减少处理延迟(例如,在癫痫检测任务中减少 2.5 倍)。我们进一步开发了一种成本感知学习方法来联合优化功率和延迟指标。我们表明,算法-硬件协同设计能够实现基于树的模型的能量和内存优化设计,同时保持高精度和低延迟。此外,我们表明,我们提出的基于树的模型具有高度可解释的决策过程,这对于闭环刺激等安全关键应用至关重要。

相似文献

3
ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification.ResOT:用于神经信号分类的资源高效斜树
IEEE Trans Biomed Circuits Syst. 2020 Aug;14(4):692-704. doi: 10.1109/TBCAS.2020.3004544. Epub 2020 Jun 24.
7
CLoSES: A platform for closed-loop intracranial stimulation in humans.CLoSES:一个用于人类闭环颅内刺激的平台。
Neuroimage. 2020 Dec;223:117314. doi: 10.1016/j.neuroimage.2020.117314. Epub 2020 Sep 1.

引用本文的文献

本文引用的文献

4
Technology of deep brain stimulation: current status and future directions.深部脑刺激技术:现状与未来方向。
Nat Rev Neurol. 2021 Feb;17(2):75-87. doi: 10.1038/s41582-020-00426-z. Epub 2020 Nov 26.
8
The RNS System: brain-responsive neurostimulation for the treatment of epilepsy.RNS 系统:用于治疗癫痫的脑反应神经刺激。
Expert Rev Med Devices. 2021 Feb;18(2):129-138. doi: 10.1080/17434440.2019.1683445. Epub 2020 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验