Sedighian Pouye, Subudhi Andrew W, Scalzo Fabien, Asgari Shadnaz
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5490-3. doi: 10.1109/EMBC.2014.6944869.
Recent advances in technology have enabled automatic cardiac auscultation using digital stethoscopes. This in turn creates the need for development of algorithms capable of automatic segmentation of heart sounds. Pediatric heart sound segmentation is a challenging task due to various confounding factors including the significant influence of respiration on children's heart sounds. The current work investigates the application of homomorphic filtering and Hidden Markov Model for the purpose of segmenting pediatric heart sounds. The efficacy of the proposed method is evaluated on the publicly available Pascal Challenge dataset and its performance is compared with those of three other existing methods. The results show that our proposed method achieves an accuracy of 92.4%±1.1% and 93.5%±1.1% in identifying the first and second heart sound components, respectively, and is superior to three other existing methods in terms of accuracy or computational complexity.
技术的最新进展使得使用数字听诊器进行心脏自动听诊成为可能。这进而产生了开发能够自动分割心音算法的需求。由于包括呼吸对儿童心音的重大影响等各种混杂因素,儿科心音分割是一项具有挑战性的任务。当前的工作研究了同态滤波和隐马尔可夫模型在儿科心音分割中的应用。在公开可用的帕斯卡挑战数据集上评估了所提出方法的有效性,并将其性能与其他三种现有方法的性能进行了比较。结果表明,我们提出的方法在识别第一和第二心音成分时的准确率分别达到92.4%±1.1%和93.5%±1.1%,并且在准确性或计算复杂度方面优于其他三种现有方法。