Suppr超能文献

基于多图谱图像配准的CT图像自动肾脏分割

Automatic kidney segmentation in CT images based on multi-atlas image registration.

作者信息

Yang Guanyu, Gu Jinjin, Chen Yang, Liu Wangyan, Tang Lijun, Shu Huazhong, Toumoulin Christine

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5538-41. doi: 10.1109/EMBC.2014.6944881.

Abstract

Kidney segmentation is an important step for computer-aided diagnosis or treatment in urology. In this paper, we present an automatic method based on multi-atlas image registration for kidney segmentation. The method mainly relies on a two-step framework to obtain coarse-to-fine segmentation results. In the first step, down-sampled patient image is registered with a set of low-resolution atlas images. A coarse kidney segmentation result is generated to locate the left and right kidneys. In the second step, the left and right kidneys are cropped from original images and aligned with another set of high-resolution atlas images to obtain the final results respectively. Segmentation results from 14 CT angiographic (CTA) images show that our proposed method can segment the kidneys with a high accuracy. The average Dice similarity coefficient and surface-to-surface distance between segmentation results and reference standard are 0.952 and 0.913mm. Furthermore, the kidney segmentation in CT urography (CTU) and CTA images of 12 patients were performed to show the feasibility of our method in CTU images.

摘要

肾脏分割是泌尿外科计算机辅助诊断或治疗中的重要步骤。在本文中,我们提出了一种基于多图谱图像配准的肾脏分割自动方法。该方法主要依靠一个两步框架来获得从粗到精的分割结果。第一步,将下采样后的患者图像与一组低分辨率图谱图像进行配准。生成一个粗略的肾脏分割结果以定位左右肾脏。第二步,从原始图像中裁剪出左右肾脏,并分别与另一组高分辨率图谱图像对齐以获得最终结果。来自14张CT血管造影(CTA)图像的分割结果表明,我们提出的方法能够高精度地分割肾脏。分割结果与参考标准之间的平均骰子相似系数和表面到表面距离分别为0.952和0.913mm。此外,对12例患者的CT尿路造影(CTU)和CTA图像进行肾脏分割,以展示我们的方法在CTU图像中的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验