Suppr超能文献

基于深度卷积神经网络和时间隐式水平集的自动腹部多器官分割。

Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.

机构信息

School of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, China.

College of Computer Science and Technology, Huaqiao University, Xiamen, 361021, China.

出版信息

Int J Comput Assist Radiol Surg. 2017 Mar;12(3):399-411. doi: 10.1007/s11548-016-1501-5. Epub 2016 Nov 24.

Abstract

PURPOSE

Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images.

METHODS

The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model.

RESULTS

Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency.

CONCLUSION

A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.

摘要

目的

从 CT 图像中对多器官进行分割是计算机辅助诊断和手术规划的重要步骤。然而,由放射科医生手动对器官进行描绘既繁琐、耗时又重现性差。因此,我们提出了一种从三维腹部 CT 图像中自动分割多个器官的方法。

方法

所提出的方法采用深度全卷积神经网络(CNN)进行器官检测和分割,进一步通过时间隐式多相演化方法进行细化。首先,训练一个 3D CNN 自动定位和描绘感兴趣的器官,输出概率预测图。学习到的概率图为后续的精细分割提供了特定于个体的空间先验和初始化。然后,为了细化多器官分割,将图像强度模型、概率先验以及不相交区域约束纳入统一的能量函数中。最后,利用新颖的时间隐式多相水平集算法有效地优化了所提出的能量函数模型。

结果

我们的方法已经在 140 个腹部 CT 扫描中进行了评估,用于分割四个器官(肝脏、脾脏和两个肾脏)。与真实情况相比,肝脏、脾脏和两个肾脏的平均 Dice 重叠率分别为 96.0%、94.2%和 95.4%,所有分割器官的平均对称面距离均小于 1.3mm。平均每个 CT 容积的计算时间为 125s。所获得的准确性与最先进的方法相当,但效率要高得多。

结论

我们开发并评估了一种从腹部 CT 图像中自动分割多器官的方法。结果表明,该方法具有高效、鲁棒和高效的特点,具有潜在的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验