Suppr超能文献

权重剪枝-UNet:用于肾肿瘤语义分割的带深度可分离卷积的权重剪枝UNet

Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors.

作者信息

Rao Patike Kiran, Chatterjee Subarna, Sharma Sreedhar

机构信息

Department of Computer Science and Engineering, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India.

Department of Computer Science and Engineering, Faculty of Engineering and Technology, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India.

出版信息

J Med Signals Sens. 2022 May 12;12(2):108-113. doi: 10.4103/jmss.jmss_108_21. eCollection 2022 Apr-Jun.

Abstract

BACKGROUND

Accurate semantic segmentation of kidney tumors in computed tomography (CT) images is difficult because tumors feature varied forms and occasionally, look alike. The KiTs19 challenge sets the groundwork for future advances in kidney tumor segmentation.

METHODS

We present weight pruning (WP)-UNet, a deep network model that is lightweight with a small scale; it involves few parameters with a quick assumption time and a low floating-point computational complexity.

RESULTS

We trained and evaluated the model with CT images from 210 patients. The findings implied the dominance of our method on the training Dice score (0.98) for the kidney tumor region. The proposed model only uses 1,297,441 parameters and 7.2e floating-point operations, three times lower than those for other network models.

CONCLUSIONS

The results confirm that the proposed architecture is smaller than that of UNet, involves less computational complexity, and yields good accuracy, indicating its potential applicability in kidney tumor imaging.

摘要

背景

计算机断层扫描(CT)图像中肾肿瘤的精确语义分割具有挑战性,因为肿瘤形态各异,有时甚至外观相似。KiTs19挑战赛为肾肿瘤分割的未来进展奠定了基础。

方法

我们提出了权重剪枝(WP)-UNet,这是一种轻量级的深度网络模型,规模小;它涉及的参数较少,假设时间短,浮点计算复杂度低。

结果

我们使用来自210名患者的CT图像对该模型进行了训练和评估。结果表明,我们的方法在肾肿瘤区域的训练骰子分数(0.98)方面具有优势。所提出的模型仅使用1,297,441个参数和7.2e浮点运算,比其他网络模型低三倍。

结论

结果证实,所提出的架构比UNet小,计算复杂度更低,并且具有良好的准确性,表明其在肾肿瘤成像中的潜在适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e9/9215835/8e06d0dd95eb/JMSS-12-108-g001.jpg

相似文献

1
Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors.
J Med Signals Sens. 2022 May 12;12(2):108-113. doi: 10.4103/jmss.jmss_108_21. eCollection 2022 Apr-Jun.
2
SD-UNet: Stripping Down U-Net for Segmentation of Biomedical Images on Platforms with Low Computational Budgets.
Diagnostics (Basel). 2020 Feb 18;10(2):110. doi: 10.3390/diagnostics10020110.
4
Channel-Unet: A Spatial Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation.
Front Genet. 2019 Nov 26;10:1110. doi: 10.3389/fgene.2019.01110. eCollection 2019.
5
Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
Comput Methods Programs Biomed. 2019 Sep;178:289-301. doi: 10.1016/j.cmpb.2019.07.005. Epub 2019 Jul 8.
6
Medical lesion segmentation by combining multimodal images with modality weighted UNet.
Med Phys. 2022 Jun;49(6):3692-3704. doi: 10.1002/mp.15610. Epub 2022 Apr 7.
7
Dense-UNet: a novel multiphoton cellular image segmentation model based on a convolutional neural network.
Quant Imaging Med Surg. 2020 Jun;10(6):1275-1285. doi: 10.21037/qims-19-1090.
8
Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images.
Comput Methods Programs Biomed. 2022 Jul;222:106946. doi: 10.1016/j.cmpb.2022.106946. Epub 2022 Jun 8.
9
Accurate Tumor Segmentation via Octave Convolution Neural Network.
Front Med (Lausanne). 2021 May 19;8:653913. doi: 10.3389/fmed.2021.653913. eCollection 2021.

引用本文的文献

本文引用的文献

1
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge.
Med Image Anal. 2021 Jan;67:101821. doi: 10.1016/j.media.2020.101821. Epub 2020 Oct 2.
2
Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges.
J Digit Imaging. 2019 Aug;32(4):582-596. doi: 10.1007/s10278-019-00227-x.
3
Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning.
IEEE Trans Med Imaging. 2018 Jul;37(7):1562-1573. doi: 10.1109/TMI.2018.2791721.
4
Automatic kidney segmentation in CT images based on multi-atlas image registration.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5538-41. doi: 10.1109/EMBC.2014.6944881.
5
Automated noninvasive classification of renal cancer on multiphase CT.
Med Phys. 2011 Oct;38(10):5738-46. doi: 10.1118/1.3633898.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验