Suppr超能文献

相似文献

2
Genetic interaction between DNA repair factors PAXX, XLF, XRCC4 and DNA-PKcs in human cells.
FEBS Open Bio. 2019 Jul;9(7):1315-1326. doi: 10.1002/2211-5463.12681. Epub 2019 Jun 12.
3
Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes.
Cell Cycle. 2017 Feb;16(3):286-295. doi: 10.1080/15384101.2016.1253640. Epub 2016 Nov 10.
5
PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10619-24. doi: 10.1073/pnas.1611882113. Epub 2016 Sep 6.
6
Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination.
Cell Rep. 2016 Sep 13;16(11):2967-2979. doi: 10.1016/j.celrep.2016.08.069. Epub 2016 Sep 2.
8
PAXX Is an Accessory c-NHEJ Factor that Associates with Ku70 and Has Overlapping Functions with XLF.
Cell Rep. 2016 Oct 4;17(2):541-555. doi: 10.1016/j.celrep.2016.09.026.
9
Absence of XRCC4 and its paralogs in human cells reveal differences in outcomes for DNA repair and V(D)J recombination.
DNA Repair (Amst). 2020 Jan;85:102738. doi: 10.1016/j.dnarep.2019.102738. Epub 2019 Nov 12.
10
Ku recruits XLF to DNA double-strand breaks.
EMBO Rep. 2008 Jan;9(1):91-6. doi: 10.1038/sj.embor.7401137. Epub 2007 Dec 7.

引用本文的文献

3
Dynamic assemblies and coordinated reactions of non-homologous end joining.
Nature. 2025 Jun 11. doi: 10.1038/s41586-025-09078-9.
4
Nuclear VPS35 attenuates NHEJ repair by sequestering Ku protein.
Mol Med. 2025 Jun 9;31(1):222. doi: 10.1186/s10020-025-01288-1.
8
Alternative splicing modulates chromatin interactome and phase separation of the RIF1 C-terminal domain.
bioRxiv. 2024 Nov 1:2024.10.29.619708. doi: 10.1101/2024.10.29.619708.
9
CRISPR-Cas9-mediated homology-directed repair for precise gene editing.
Mol Ther Nucleic Acids. 2024 Sep 26;35(4):102344. doi: 10.1016/j.omtn.2024.102344. eCollection 2024 Dec 10.
10

本文引用的文献

1
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
2
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.
4
The spatial organization of non-homologous end joining: from bridging to end joining.
DNA Repair (Amst). 2014 May;17(100):98-109. doi: 10.1016/j.dnarep.2014.02.010. Epub 2014 Mar 11.
5
The clinical impact of deficiency in DNA non-homologous end-joining.
DNA Repair (Amst). 2014 Apr;16:84-96. doi: 10.1016/j.dnarep.2014.02.011. Epub 2014 Mar 11.
6
A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair.
J Cell Biol. 2013 Aug 5;202(3):579-95. doi: 10.1083/jcb.201303073. Epub 2013 Jul 29.
7
DNA targeting specificity of RNA-guided Cas9 nucleases.
Nat Biotechnol. 2013 Sep;31(9):827-32. doi: 10.1038/nbt.2647. Epub 2013 Jul 21.
8
RNA-guided human genome engineering via Cas9.
Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.
10
An introduction to data reduction: space-group determination, scaling and intensity statistics.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92. doi: 10.1107/S090744491003982X. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验