Suppr超能文献

弹性和非弹性能量损失在钛酸锶中离子径迹形成上的协同作用

Synergy of elastic and inelastic energy loss on ion track formation in SrTiO₃.

作者信息

Weber William J, Zarkadoula Eva, Pakarinen Olli H, Sachan Ritesh, Chisholm Matthew F, Liu Peng, Xue Haizhou, Jin Ke, Zhang Yanwen

机构信息

1] Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA [2] Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

出版信息

Sci Rep. 2015 Jan 12;5:7726. doi: 10.1038/srep07726.

Abstract

While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO₃), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.

摘要

虽然高能离子与固体的相互作用会导致固体中的电子发生非弹性能量损失以及原子核发生弹性能量损失,但由于这些能量损失对电子-电子散射过程、电子-声子耦合、局域电子激发、带电缺陷的扩散率以及固态辐射分解的依赖性,它们对离子键和共价键材料中的缺陷产生、纳米结构演化和相变的耦合效应是复杂的,尚未得到充分理解。在此我们表明,在单晶钛酸锶(SrTiO₃)中,非弹性能量损失与弹性能量损失产生的预先存在的原子缺陷之间会产生巨大的协同效应,从而导致形成纳米尺寸的非晶轨迹,但仅在存在预先存在缺陷的狭窄区域内。这些缺陷会局部降低电子和原子热导率,并增加电子-声子耦合,进而局部增加每个离子的热尖峰强度。这项工作揭示了在理解缺陷在电子能量耗散和电子-声子耦合中的作用方面存在的一个重大差距;它还为创建新型界面和纳米结构以实现薄膜结构功能化提供了思路,包括可调谐的电子、离子、磁性和光学特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a21/4289895/c95963818098/srep07726-f1.jpg

相似文献

2
Predictive modeling of synergistic effects in nanoscale ion track formation.
Phys Chem Chem Phys. 2015 Sep 21;17(35):22538-42. doi: 10.1039/c5cp02382c.
3
Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
Acc Chem Res. 2013 Jun 18;46(6):1348-57. doi: 10.1021/ar300189j. Epub 2013 Jan 31.
4
Cross sections for low-energy (1-100 eV) electron elastic and inelastic scattering in amorphous ice.
Radiat Res. 2003 Jan;159(1):3-22. doi: 10.1667/0033-7587(2003)159[0003:csflee]2.0.co;2.
6
Elastic and inelastic mean free paths for scattering of fast electrons in thin-film oxides.
Ultramicroscopy. 2022 Oct;240:113570. doi: 10.1016/j.ultramic.2022.113570. Epub 2022 Jun 8.
7
Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons.
ACS Appl Mater Interfaces. 2018 May 16;10(19):16731-16738. doi: 10.1021/acsami.8b02326. Epub 2018 May 7.
10
Nanoscale core-shell structure and recrystallization of swift heavy ion tracks in SrTiO.
Nanoscale. 2024 Aug 7;16(30):14366-14377. doi: 10.1039/d4nr01974a.

引用本文的文献

1
Latent ion tracks were finally observed in diamond.
Nat Commun. 2024 Feb 27;15(1):1786. doi: 10.1038/s41467-024-45934-4.
2
Optical signatures of single ion tracks in ZnO.
Nanoscale Adv. 2019 Dec 23;2(2):724-733. doi: 10.1039/c9na00677j. eCollection 2020 Feb 18.
3
High-Energy Heavy Ion Irradiation of AlO, MgO and CaF.
Materials (Basel). 2022 Mar 13;15(6):2110. doi: 10.3390/ma15062110.
4
The electronic properties of SrTiO with oxygen vacancies or substitutions.
Sci Rep. 2021 Dec 2;11(1):23341. doi: 10.1038/s41598-021-02751-9.
6
Investigation of Ion Irradiation Effects in Silicon and Graphite Produced by 23 MeV I Beam.
Materials (Basel). 2021 Apr 11;14(8):1904. doi: 10.3390/ma14081904.
7
8
electronic stopping power for protons in GaInP/GaAs/Ge triple-junction solar cells for space applications.
R Soc Open Sci. 2020 Nov 11;7(11):200925. doi: 10.1098/rsos.200925. eCollection 2020 Nov.
10
Insights on dramatic radial fluctuations in track formation by energetic ions.
Sci Rep. 2016 Jun 2;6:27196. doi: 10.1038/srep27196.

本文引用的文献

2
Persistent optically induced magnetism in oxygen-deficient strontium titanate.
Nat Mater. 2014 May;13(5):481-7. doi: 10.1038/nmat3914. Epub 2014 Mar 23.
3
The effect of electronic energy loss on irradiation-induced grain growth in nanocrystalline oxides.
Phys Chem Chem Phys. 2014 May 7;16(17):8051-9. doi: 10.1039/c4cp00392f.
5
Metallic and insulating interfaces of amorphous SrTiO₃-based oxide heterostructures.
Nano Lett. 2011 Sep 14;11(9):3774-8. doi: 10.1021/nl201821j. Epub 2011 Aug 10.
6
Origin of polarity in amorphous SrTiO3.
Phys Rev Lett. 2007 Nov 23;99(21):215502. doi: 10.1103/PhysRevLett.99.215502. Epub 2007 Nov 20.
7
Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching.
Nat Mater. 2005 Aug;4(8):593-6. doi: 10.1038/nmat1402. Epub 2005 Jul 10.
8
Room-temperature ferroelectricity in strained SrTiO3.
Nature. 2004 Aug 12;430(7001):758-61. doi: 10.1038/nature02773.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验