Weber William J, Zarkadoula Eva, Pakarinen Olli H, Sachan Ritesh, Chisholm Matthew F, Liu Peng, Xue Haizhou, Jin Ke, Zhang Yanwen
1] Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA [2] Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Sci Rep. 2015 Jan 12;5:7726. doi: 10.1038/srep07726.
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO₃), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.
虽然高能离子与固体的相互作用会导致固体中的电子发生非弹性能量损失以及原子核发生弹性能量损失,但由于这些能量损失对电子-电子散射过程、电子-声子耦合、局域电子激发、带电缺陷的扩散率以及固态辐射分解的依赖性,它们对离子键和共价键材料中的缺陷产生、纳米结构演化和相变的耦合效应是复杂的,尚未得到充分理解。在此我们表明,在单晶钛酸锶(SrTiO₃)中,非弹性能量损失与弹性能量损失产生的预先存在的原子缺陷之间会产生巨大的协同效应,从而导致形成纳米尺寸的非晶轨迹,但仅在存在预先存在缺陷的狭窄区域内。这些缺陷会局部降低电子和原子热导率,并增加电子-声子耦合,进而局部增加每个离子的热尖峰强度。这项工作揭示了在理解缺陷在电子能量耗散和电子-声子耦合中的作用方面存在的一个重大差距;它还为创建新型界面和纳米结构以实现薄膜结构功能化提供了思路,包括可调谐的电子、离子、磁性和光学特性。