Vicinanza Mariella, Korolchuk Viktor I, Ashkenazi Avraham, Puri Claudia, Menzies Fiona M, Clarke Jonathan H, Rubinsztein David C
Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
Mol Cell. 2015 Jan 22;57(2):219-34. doi: 10.1016/j.molcel.2014.12.007. Epub 2015 Jan 8.
Phosphatidylinositol 3-phosphate (PI(3)P), the product of class III PI3K VPS34, recruits specific autophagic effectors, like WIPI2, during the initial steps of autophagosome biogenesis and thereby regulates canonical autophagy. However, mammalian cells can produce autophagosomes through enigmatic noncanonical VPS34-independent pathways. Here we show that PI(5)P can regulate autophagy via PI(3)P effectors and thereby identify a mechanistic explanation for forms of noncanonical autophagy. PI(5)P synthesis by the phosphatidylinositol 5-kinase PIKfyve was required for autophagosome biogenesis, and it increased levels of PI(5)P, stimulated autophagy, and reduced the levels of autophagic substrates. Inactivation of VPS34 impaired recruitment of WIPI2 and DFCP1 to autophagic precursors, reduced ATG5-ATG12 conjugation, and compromised autophagosome formation. However, these phenotypes were rescued by PI(5)P in VPS34-inactivated cells. These findings provide a mechanistic framework for alternative VPS34-independent autophagy-initiating pathways, like glucose starvation, and unravel a cytoplasmic function for PI(5)P, which previously has been linked predominantly to nuclear roles.
磷脂酰肌醇3 - 磷酸(PI(3)P)是III类磷脂酰肌醇3激酶VPS34的产物,在自噬体生物发生的初始步骤中招募特定的自噬效应蛋白,如WIPI2,从而调节经典自噬。然而,哺乳动物细胞可以通过神秘的非经典VPS34非依赖途径产生自噬体。在这里,我们表明PI(5)P可以通过PI(3)P效应蛋白调节自噬,从而为非经典自噬形式提供了一种机制解释。磷脂酰肌醇5激酶PIKfyve合成PI(5)P是自噬体生物发生所必需的,它增加了PI(5)P的水平,刺激了自噬,并降低了自噬底物的水平。VPS34的失活损害了WIPI2和DFCP1向自噬前体的募集,减少了ATG5 - ATG12的缀合,并损害了自噬体的形成。然而,在VPS34失活的细胞中,PI(5)P挽救了这些表型。这些发现为替代的VPS34非依赖自噬起始途径,如葡萄糖饥饿,提供了一个机制框架,并揭示了PI(5)P的细胞质功能,此前PI(5)P主要与核作用相关。