Suppr超能文献

在存在暴露诱导的中介变量-结局混杂因素的情况下,对直接效应和间接效应进行敏感性分析。

Sensitivity analysis for direct and indirect effects in the presence of exposure-induced mediator-outcome confounders.

作者信息

VanderWeele Tyler J, Chiba Yasutaka

机构信息

Departments of Epidemiology and biostatistics, Harvard School of Public Health, Boston, MA, USA.

Division of Biostatistics, Clinical Research Center, Kinki University School of Medicine, Osaka, Japan.

出版信息

Epidemiol Biostat Public Health. 2014;11(2). doi: 10.2427/9027.

Abstract

Questions of mediation are often of interest in reasoning about mechanisms, and methods have been developed to address these questions. However, these methods make strong assumptions about the absence of confounding. Even if exposure is randomized, there may be mediator-outcome confounding variables. Inference about direct and indirect effects is particularly challenging if these mediator-outcome confounders are affected by the exposure because in this case these effects are not identified irrespective of whether data is available on these exposure-induced mediator-outcome confounders. In this paper, we provide a sensitivity analysis technique for natural direct and indirect effects that is applicable even if there are mediator-outcome confounders affected by the exposure. We give techniques for both the difference and risk ratio scales and compare the technique to other possible approaches.

摘要

中介问题在机制推理中常常备受关注,并且已经开发出一些方法来解决这些问题。然而,这些方法对不存在混杂因素做出了强有力的假设。即使暴露是随机分配的,也可能存在中介-结局混杂变量。如果这些中介-结局混杂因素受到暴露的影响,那么对直接效应和间接效应的推断就会特别具有挑战性,因为在这种情况下,无论是否有关于这些暴露诱导的中介-结局混杂因素的数据,这些效应都无法识别。在本文中,我们提供了一种针对自然直接效应和间接效应的敏感性分析技术,即使存在受暴露影响的中介-结局混杂因素,该技术也适用。我们给出了差值尺度和风险比尺度的技术,并将该技术与其他可能的方法进行比较。

相似文献

7
Mediation analysis with time varying exposures and mediators.具有随时间变化暴露因素和中介变量的中介分析。
J R Stat Soc Series B Stat Methodol. 2017 Jun;79(3):917-938. doi: 10.1111/rssb.12194. Epub 2016 Jun 27.

引用本文的文献

3
Practical challenges in mediation analysis: a guide for applied researchers.中介分析中的实际挑战:应用研究人员指南
Health Serv Outcomes Res Methodol. 2025;25(1):57-84. doi: 10.1007/s10742-024-00327-4. Epub 2024 Apr 12.
6
A brief primer on conducting regression-based causal mediation analysis.基于回归的因果中介分析简介。
Psychol Trauma. 2023 Sep;15(6):930-938. doi: 10.1037/tra0001421. Epub 2023 Jan 26.
7
Applied causal inference methods for sequential mediators.序贯中介的应用因果推理方法。
BMC Med Res Methodol. 2022 Nov 24;22(1):301. doi: 10.1186/s12874-022-01764-w.
10
Pathway-specific population attributable fractions.特定通路的人群归因分数。
Int J Epidemiol. 2022 Dec 13;51(6):1957-1969. doi: 10.1093/ije/dyac079.

本文引用的文献

4
Direct effect models.直接效应模型。
Int J Biostat. 2008;4(1):Article 23. doi: 10.2202/1557-4679.1064.
9
Odds ratios for mediation analysis for a dichotomous outcome.二分类结局中介分析的优势比。
Am J Epidemiol. 2010 Dec 15;172(12):1339-48. doi: 10.1093/aje/kwq332. Epub 2010 Oct 29.
10
A general approach to causal mediation analysis.因果中介分析的一般方法。
Psychol Methods. 2010 Dec;15(4):309-34. doi: 10.1037/a0020761.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验