Suppr超能文献

具有随时间变化暴露因素和中介变量的中介分析。

Mediation analysis with time varying exposures and mediators.

作者信息

VanderWeele Tyler J, Tchetgen Tchetgen Eric J

机构信息

Harvard T.H. Chan School of Public Health, Departments of Biostatistics and Epidemiology, 677 Huntington Avenue, Boston MA 02115, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2017 Jun;79(3):917-938. doi: 10.1111/rssb.12194. Epub 2016 Jun 27.

Abstract

In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the "mediational g-formula." When there is no mediation, the mediational g-formula reduces to Robins' regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl's mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators.

摘要

在本文中,我们考虑暴露和中介随时间变化时的因果中介分析。我们给出了非参数识别结果,讨论了参数化实现,并基于两个边际结构模型的结果组合,提供了一种计算直接效应和间接效应的加权方法。我们还讨论了我们的结果如何对纵向结构方程模型产生的效应估计进行因果解释。当存在受先前暴露和中介影响的随时间变化的混杂因素时,自然直接效应和间接效应无法识别。然而,我们定义了在这种情况下可识别的自然直接效应和间接效应的随机干预类似物。识别这些效应的公式我们称为“中介g公式”。当不存在中介时,中介g公式简化为用于纵向数据的罗宾斯正则g公式。当不存在受先前暴露和中介值影响的随时间变化的混杂因素时,中介g公式简化为珀尔中介公式的纵向版本。然而,中介g公式本身可以同时处理中介和随时间变化的混杂因素,并且构成了一种用于具有随时间变化的暴露和中介的中介分析的通用方法。

相似文献

1
Mediation analysis with time varying exposures and mediators.具有随时间变化暴露因素和中介变量的中介分析。
J R Stat Soc Series B Stat Methodol. 2017 Jun;79(3):917-938. doi: 10.1111/rssb.12194. Epub 2016 Jun 27.
4
Causal Mediation Analysis with Multiple Time-varying Mediators.具有多个时变中介的因果中介分析。
Epidemiology. 2023 Jan 1;34(1):8-19. doi: 10.1097/EDE.0000000000001555. Epub 2022 Sep 27.

引用本文的文献

2
The inflammation-depression link: How social networks buffer or exacerbate risk.炎症与抑郁的关联:社交网络如何缓冲或加剧风险。
Brain Behav Immun Health. 2025 Jul 4;48:101052. doi: 10.1016/j.bbih.2025.101052. eCollection 2025 Oct.
4
Robust evaluation of longitudinal surrogate markers with censored data.对带有删失数据的纵向替代标志物进行稳健评估。
J R Stat Soc Series B Stat Methodol. 2024 Dec 26;87(3):891-907. doi: 10.1093/jrsssb/qkae119. eCollection 2025 Jul.
6
CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA.稀疏和不规则纵向数据的因果中介分析
Ann Appl Stat. 2021 Jun;15(2):747-767. doi: 10.1214/20-aoas1427. Epub 2021 Jul 12.
9
Longitudinal analysis of the ABCD® study.ABCD® 研究的纵向分析。
Dev Cogn Neurosci. 2025 Apr;72:101518. doi: 10.1016/j.dcn.2025.101518. Epub 2025 Feb 8.

本文引用的文献

4
Causal mediation analysis with multiple mediators.具有多个中介变量的因果中介分析。
Biometrics. 2015 Mar;71(1):1-14. doi: 10.1111/biom.12248. Epub 2014 Oct 28.
10
On the reciprocal association between loneliness and subjective well-being.论孤独感和主观幸福感的相互关系。
Am J Epidemiol. 2012 Nov 1;176(9):777-84. doi: 10.1093/aje/kws173. Epub 2012 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验