Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
J Clin Periodontol. 2015 Feb;42(2):204-12. doi: 10.1111/jcpe.12362. Epub 2015 Feb 2.
Analysing continuous outcomes for network meta-analysis by means of linear mixed models is a great challenge, as it requires statistical software packages to specify special patterns of model error variance and covariance structure. This article demonstrates a non-Bayesian approach to network meta-analysis for continuous outcomes in periodontal research with a special focus on the adjustment of data dependency.
Seventeen studies on guided tissue regeneration were used to illustrate how the proposed linear mixed models for network meta-analysis of continuous outcomes.
METHODS & RESULTS: Arm-based network meta-analysis use treatment arms from each study as the unit of analysis; when patients are randomly assigned to each arm, data are deemed independent and therefore no adjustment is required for multi-arm trials. Trial-based network meta-analysis use treatment contrasts as the unit of analysis, and therefore treatment contrasts within a multi-arm trial are not independent. This data dependency occurs also in split-mouth studies, and adjustments for data dependency are therefore required.
Arm-based analysis is the preferred approach to network meta-analysis, when all included studies use the parallel group design and some compare more than two treatment arms. When included studies used designs that yield dependent data, the trial-based analysis is the preferred approach.
通过线性混合模型分析网状荟萃分析中的连续结局是一项巨大的挑战,因为它需要统计软件包来指定模型误差方差和协方差结构的特殊模式。本文展示了一种针对牙周研究中连续结局的网状荟萃分析的非贝叶斯方法,特别关注数据依赖性的调整。
十七项关于引导组织再生的研究被用来说明如何为连续结局的网状荟萃分析提出线性混合模型。
基于手臂的网状荟萃分析将每个研究的治疗手臂作为分析单位;当患者被随机分配到每个手臂时,数据被认为是独立的,因此不需要对多臂试验进行调整。基于试验的网状荟萃分析以治疗对比作为分析单位,因此多臂试验中的治疗对比是不独立的。这种数据依赖性也出现在分口研究中,因此需要对数据依赖性进行调整。
当所有纳入的研究都使用平行组设计并且有些研究比较了两个以上的治疗手臂时,基于手臂的分析是网状荟萃分析的首选方法。当纳入的研究使用产生相关数据的设计时,基于试验的分析是首选方法。