Taylor David, Bhandari Sunil, Seymour Anne-Marie L
Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and.
Department of Renal Medicine, Hull and East Yorkshire Hospital NHS Trust, Kingston-upon-Hull, United Kingdom.
Am J Physiol Renal Physiol. 2015 Mar 15;308(6):F579-87. doi: 10.1152/ajprenal.00442.2014. Epub 2015 Jan 13.
Uremic cardiomyopathy (UCM) is characterized by metabolic remodelling, compromised energetics, and loss of insulin-mediated cardioprotection, which result in unsustainable adaptations and heart failure. However, the role of mitochondria and the susceptibility of mitochondrial permeability transition pore (mPTP) formation in ischemia-reperfusion injury (IRI) in UCM are unknown. Using a rat model of chronic uremia, we investigated the oxidative capacity of mitochondria in UCM and their sensitivity to ischemia-reperfusion mimetic oxidant and calcium stressors to assess the susceptibility to mPTP formation. Uremic animals exhibited a 45% reduction in creatinine clearance (P < 0.01), and cardiac mitochondria demonstrated uncoupling with increased state 4 respiration. Following IRI, uremic mitochondria exhibited a 58% increase in state 4 respiration (P < 0.05), with an overall reduction in respiratory control ratio (P < 0.01). Cardiomyocytes from uremic animals displayed a 30% greater vulnerability to oxidant-induced cell death determined by FAD autofluorescence (P < 0.05) and reduced mitochondrial redox state on exposure to 200 μM H2O2 (P < 0.01). The susceptibility to calcium-induced permeability transition showed that maximum rates of depolarization were enhanced in uremia by 79%. These results demonstrate that mitochondrial respiration in the uremic heart is chronically uncoupled. Cardiomyocytes in UCM are characterized by a more oxidized mitochondrial network, with greater susceptibility to oxidant-induced cell death and enhanced vulnerability to calcium-induced mPTP formation. Collectively, these findings indicate that mitochondrial function is compromised in UCM with increased vulnerability to calcium and oxidant-induced stressors, which may underpin the enhanced predisposition to IRI in the uremic heart.
尿毒症心肌病(UCM)的特征在于代谢重塑、能量代谢受损以及胰岛素介导的心脏保护作用丧失,这些会导致适应性无法持续并引发心力衰竭。然而,线粒体的作用以及线粒体通透性转换孔(mPTP)形成在UCM缺血再灌注损伤(IRI)中的易感性尚不清楚。我们使用慢性尿毒症大鼠模型,研究了UCM中线粒体的氧化能力及其对缺血再灌注模拟氧化剂和钙应激源的敏感性,以评估mPTP形成的易感性。尿毒症动物的肌酐清除率降低了45%(P<0.01),心脏线粒体表现出解偶联,状态4呼吸增加。IRI后,尿毒症线粒体的状态4呼吸增加了58%(P<0.05),呼吸控制率总体降低(P<0.01)。通过黄素腺嘌呤二核苷酸(FAD)自发荧光测定,尿毒症动物的心肌细胞对氧化剂诱导的细胞死亡的易感性高30%(P<0.05),暴露于200μM过氧化氢时线粒体氧化还原状态降低(P<0.01)。对钙诱导的通透性转换的易感性表明,尿毒症时去极化的最大速率提高了79%。这些结果表明,尿毒症心脏中的线粒体呼吸长期解偶联。UCM中的心肌细胞的特征是线粒体网络氧化程度更高,对氧化剂诱导的细胞死亡更敏感,对钙诱导的mPTP形成更易感性。总的来说,这些发现表明UCM中线粒体功能受损,对钙和氧化剂诱导的应激源的易感性增加,这可能是尿毒症心脏对IRI易感性增强的基础。