Suppr超能文献

生物力学约束任务在协同分析设计与解读中的影响

Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses.

作者信息

Steele Katherine M, Tresch Matthew C, Perreault Eric J

机构信息

Mechanical Engineering, University of Washington, Seattle, Washington; Sensorimotor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois;

Sensorimotor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Biomedical Engineering, Northwestern University, Evanston, Illinois; Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2102-13. doi: 10.1152/jn.00769.2013. Epub 2015 Jan 14.

Abstract

Matrix factorization algorithms are commonly used to analyze muscle activity and provide insight into neuromuscular control. These algorithms identify low-dimensional subspaces, commonly referred to as synergies, which can describe variation in muscle activity during a task. Synergies are often interpreted as reflecting underlying neural control; however, it is unclear how these analyses are influenced by biomechanical and task constraints, which can also lead to low-dimensional patterns of muscle activation. The aim of this study was to evaluate whether commonly used algorithms and experimental methods can accurately identify synergy-based control strategies. This was accomplished by evaluating synergies from five common matrix factorization algorithms using muscle activations calculated from 1) a biomechanically constrained task using a musculoskeletal model and 2) without task constraints using random synergy activations. Algorithm performance was assessed by calculating the similarity between estimated synergies and those imposed during the simulations; similarities ranged from 0 (random chance) to 1 (perfect similarity). Although some of the algorithms could accurately estimate specified synergies without biomechanical or task constraints (similarity >0.7), with these constraints the similarity of estimated synergies decreased significantly (0.3-0.4). The ability of these algorithms to accurately identify synergies was negatively impacted by correlation of synergy activations, which are increased when substantial biomechanical or task constraints are present. Increased variability in synergy activations, which can be captured using robust experimental paradigms that include natural variability in motor activation patterns, improved identification accuracy but did not completely overcome effects of biomechanical and task constraints. These results demonstrate that a biomechanically constrained task can reduce the accuracy of estimated synergies and highlight the importance of using experimental protocols with physiological variability to improve synergy analyses.

摘要

矩阵分解算法通常用于分析肌肉活动,并深入了解神经肌肉控制。这些算法识别低维子空间,通常称为协同作用,它可以描述任务期间肌肉活动的变化。协同作用通常被解释为反映潜在的神经控制;然而,尚不清楚这些分析如何受到生物力学和任务约束的影响,这些约束也可能导致肌肉激活的低维模式。本研究的目的是评估常用算法和实验方法是否能够准确识别基于协同作用的控制策略。这是通过使用从以下两种情况计算出的肌肉激活来评估五种常见矩阵分解算法的协同作用来实现的:1)使用肌肉骨骼模型的生物力学约束任务;2)使用随机协同激活且无任务约束的情况。通过计算估计的协同作用与模拟过程中施加的协同作用之间的相似度来评估算法性能;相似度范围从0(随机概率)到1(完全相似)。虽然一些算法在没有生物力学或任务约束的情况下能够准确估计指定的协同作用(相似度>0.7),但在这些约束条件下,估计的协同作用相似度显著降低(0.3 - 0.4)。这些算法准确识别协同作用的能力受到协同激活相关性的负面影响,当存在大量生物力学或任务约束时,这种相关性会增加。协同激活变异性增加,这可以通过包括运动激活模式自然变异性的稳健实验范式来捕捉,提高了识别准确性,但并未完全克服生物力学和任务约束的影响。这些结果表明,生物力学约束任务会降低估计协同作用的准确性,并强调使用具有生理变异性的实验方案来改进协同作用分析的重要性。

相似文献

6
Shared muscle synergies in human walking and cycling.人类行走和骑行中的共享肌肉协同作用。
J Neurophysiol. 2014 Oct 15;112(8):1984-98. doi: 10.1152/jn.00220.2014. Epub 2014 Jul 23.

引用本文的文献

4
Neuromuscular control: from a biomechanist's perspective.神经肌肉控制:从生物力学家的视角
Front Sports Act Living. 2023 Jul 5;5:1217009. doi: 10.3389/fspor.2023.1217009. eCollection 2023.
10
Evaluation of Methods for the Extraction of Spatial Muscle Synergies.空间肌肉协同作用提取方法的评估
Front Neurosci. 2022 Jun 2;16:732156. doi: 10.3389/fnins.2022.732156. eCollection 2022.

本文引用的文献

1
Identification of a cellular node for motor control pathways.鉴定运动控制通路中的细胞节点。
Nat Neurosci. 2014 Apr;17(4):586-93. doi: 10.1038/nn.3675. Epub 2014 Mar 9.
7
Muscle synergy patterns as physiological markers of motor cortical damage.肌肉协同模式作为运动皮层损伤的生理标志物。
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14652-6. doi: 10.1073/pnas.1212056109. Epub 2012 Aug 20.
10
Muscle contributions to propulsion and support during running.肌肉在跑步过程中的推进和支撑作用。
J Biomech. 2010 Oct 19;43(14):2709-16. doi: 10.1016/j.jbiomech.2010.06.025. Epub 2010 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验