Cubillos Luis H, Kelberman Madison M, Mender Matthew J, Hite Aren, Temmar Hisham, Willsey Matthew, Kumar Nishant Ganesh, Kung Theodore A, Patil Parag G, Chestek Cynthia, Krishnan Chandramouli
Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI-48108, USA.
Department of Robotics, University of Michigan, Ann Arbor, MI-48109, USA.
bioRxiv. 2025 Feb 3:2025.02.03.636273. doi: 10.1101/2025.02.03.636273.
Individuals with severe neurological injuries often rely on assistive technologies, but current methods have limitations in accurately decoding multi-degree-of-freedom (DoF) movements. Intracortical brain-machine interfaces (iBMIs) use neural signals to provide a more natural control method, but currently struggle with higher-DoF movements-something the brain handles effortlessly. It has been theorized that the brain simplifies high-DoF movement through muscle synergies, which link multiple muscles to function as a single unit. These synergies have been studied using dimensionality reduction techniques like principal component analysis (PCA), non-negative matrix factorization (NMF), and demixed PCA (dPCA) and successfully used to reduce noise and improve offline decoder stability in non-invasive applications. However, their effectiveness in improving decoding and generalizability for implanted recordings across varied tasks is unclear. Here, we evaluated if brain and muscle synergies can enhance iBMI performance in non-human primates performing a two-DoF finger task. Specifically, we tested if PCA, dPCA, and NMF could compress and denoise brain and muscle data and improve decoder generalization across tasks. Our results showed that while all methods effectively compressed data with minimal loss in decoding accuracy, none improved performance through denoising. Additionally, none of the methods enhanced generalization across tasks. These findings suggest that while dimensionality reduction can aid data compression, alone it may not reveal the "true" control space needed to improve decoder performance or generalizability. Further research is required to determine whether synergies are the optimal control framework or if alternative approaches are required to enhance decoder robustness in iBMI applications.
患有严重神经损伤的个体通常依赖辅助技术,但目前的方法在精确解码多自由度(DoF)运动方面存在局限性。皮层内脑机接口(iBMI)利用神经信号提供更自然的控制方法,但目前在处理高自由度运动方面仍存在困难,而大脑却能轻松应对。从理论上讲,大脑通过肌肉协同作用简化高自由度运动,即把多块肌肉连接起来作为一个整体发挥作用。人们已经使用主成分分析(PCA)、非负矩阵分解(NMF)和去混合主成分分析(dPCA)等降维技术对这些协同作用进行了研究,并成功地将其用于减少非侵入性应用中的噪声和提高离线解码器的稳定性。然而,它们在改善植入式记录在各种任务中的解码和泛化能力方面的有效性尚不清楚。在这里,我们评估了大脑和肌肉协同作用是否能提高非人类灵长类动物在执行双自由度手指任务时的iBMI性能。具体来说,我们测试了PCA、dPCA和NMF是否能够压缩和去噪大脑和肌肉数据,并提高解码器在不同任务中的泛化能力。我们的结果表明,虽然所有方法都能有效压缩数据,且解码准确率损失最小,但没有一种方法能通过去噪提高性能。此外,没有一种方法能增强跨任务的泛化能力。这些发现表明,虽然降维有助于数据压缩,但仅靠降维可能无法揭示提高解码器性能或泛化能力所需的“真正”控制空间。需要进一步研究来确定协同作用是否是最佳控制框架,或者是否需要其他方法来增强iBMI应用中解码器的鲁棒性。