Bryant Astra S, Goddard C Alex, Huguenard John R, Knudsen Eric I
Department of Neurobiology, Neurosciences Program, and
Department of Neurobiology.
J Neurosci. 2015 Jan 14;35(2):761-75. doi: 10.1523/JNEUROSCI.4001-14.2015.
The modulation of gamma power (25-90 Hz) is associated with attention and has been observed across species and brain areas. However, mechanisms that control these modulations are poorly understood. The midbrain spatial attention network in birds generates high-amplitude gamma oscillations in the local field potential that are thought to represent the highest priority location for attention. Here we explore, in midbrain slices from chickens, mechanisms that regulate the power of these oscillations, using high-resolution techniques including intracellular recordings from neurons targeted by calcium imaging. The results identify a specific subtype of neuron, expressing non-α7 nicotinic acetylcholine receptors, that directly drives inhibition in the gamma-generating circuit and switches the network into a primed state capable of producing high-amplitude oscillations. The special properties of this mechanism enable rapid, persistent changes in gamma power. The brain may employ this mechanism wherever rapid modulations of gamma power are critical to information processing.
γ 功率(25 - 90赫兹)的调制与注意力相关,并且在不同物种和脑区中都有观察到。然而,控制这些调制的机制却知之甚少。鸟类的中脑空间注意力网络在局部场电位中产生高振幅的γ振荡,这些振荡被认为代表了注意力的最高优先级位置。在这里,我们利用包括对钙成像靶向神经元进行细胞内记录在内的高分辨率技术,在鸡的中脑切片中探索调节这些振荡功率的机制。结果确定了一种表达非α7烟碱型乙酰胆碱受体的特定神经元亚型,它直接驱动γ产生回路中的抑制作用,并将网络切换到能够产生高振幅振荡的准备状态。这种机制的特殊性质使得γ功率能够快速、持续地变化。在γ功率的快速调制对信息处理至关重要的任何地方,大脑都可能采用这种机制。