Suppr超能文献

长跑中跟腱的应变能:考虑肌肉能量消耗。

Achilles tendon strain energy in distance running: consider the muscle energy cost.

作者信息

Fletcher Jared R, MacIntosh Brian R

机构信息

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.

出版信息

J Appl Physiol (1985). 2015 Jan 15;118(2):193-9. doi: 10.1152/japplphysiol.00732.2014. Epub 2014 Nov 13.

Abstract

The return of tendon strain energy is thought to contribute to reducing the energy cost of running (Erun). However, this may not be consistent with the notion that increased Achilles tendon (AT) stiffness is associated with a lower Erun. Therefore, the purpose of this study was to quantify the potential for AT strain energy return relative to Erun for male and female runners of different abilities. A total of 46 long distance runners [18 elite male (EM), 12 trained male (TM), and 16 trained female (TF)] participated in this study. Erun was determined by indirect calorimetry at 75, 85, and 95% of the speed at lactate threshold (sLT), and energy cost per stride at each speed was estimated from previously reported stride length (SL)-speed relationships. AT force during running was estimated from reported vertical ground reaction force (Fz)-speed relationships, assuming an AT:ground reaction force moment arm ratio of 1.5. AT elongation was quantified during a maximal voluntary isometric contraction using ultrasound. Muscle energy cost was conservatively estimated on the basis of AT force and estimated cross-bridge mechanics and energetics. Significant group differences existed in sLT (EM > TM > TF; P < 0.001). A significant group × speed interaction was found in the energy storage/release per stride (TM > TF > EM; P < 0.001), the latter ranging from 10 to 70 J/stride. At all speeds and in all groups, estimated muscle energy cost exceeded energy return (P < 0.001). These results show that during distance running the muscle energy cost is substantially higher than the strain energy release from the AT.

摘要

肌腱应变能的回返被认为有助于降低跑步的能量消耗(Erun)。然而,这可能与跟腱(AT)僵硬度增加与较低的Erun相关这一观点不一致。因此,本研究的目的是量化不同能力的男性和女性跑步者中,AT应变能回返相对于Erun的潜力。共有46名长跑运动员[18名精英男性(EM)、12名训练有素的男性(TM)和16名训练有素的女性(TF)]参与了本研究。通过间接量热法在乳酸阈速度(sLT)的75%、85%和95%时测定Erun,并根据先前报道的步幅长度(SL)-速度关系估算每个速度下的每步能量消耗。根据报道的垂直地面反作用力(Fz)-速度关系估算跑步时的AT力,假设AT与地面反作用力的力臂比为1.5。在最大自主等长收缩期间使用超声对AT伸长进行量化。基于AT力以及估计的横桥力学和能量学保守地估算肌肉能量消耗。sLT存在显著的组间差异(EM>TM>TF;P<0.001)。在每步的能量储存/释放方面发现了显著的组×速度交互作用(TM>TF>EM;P<0.001),后者范围为10至70焦耳/步。在所有速度和所有组中,估计的肌肉能量消耗均超过能量回返(P<0.001)。这些结果表明,在长跑过程中,肌肉能量消耗远高于AT释放的应变能。

相似文献

1
Achilles tendon strain energy in distance running: consider the muscle energy cost.
J Appl Physiol (1985). 2015 Jan 15;118(2):193-9. doi: 10.1152/japplphysiol.00732.2014. Epub 2014 Nov 13.
2
Changes in Achilles tendon stiffness and energy cost following a prolonged run in trained distance runners.
PLoS One. 2018 Aug 8;13(8):e0202026. doi: 10.1371/journal.pone.0202026. eCollection 2018.
3
Theoretical considerations for muscle-energy savings during distance running.
J Biomech. 2018 May 17;73:73-79. doi: 10.1016/j.jbiomech.2018.03.023. Epub 2018 Mar 27.
4
How do differences in Achilles' tendon moment arm lengths affect muscle-tendon dynamics and energy cost during running?
Front Sports Act Living. 2023 Apr 17;5:1125095. doi: 10.3389/fspor.2023.1125095. eCollection 2023.
5
Running biomechanics: shorter heels, better economy.
J Exp Biol. 2008 Oct;211(Pt 20):3266-71. doi: 10.1242/jeb.018812.
6
Relationship between Achilles tendon properties and foot strike patterns in long-distance runners.
J Sports Sci. 2015;33(7):665-9. doi: 10.1080/02640414.2014.962576. Epub 2014 Oct 3.
7
Aging and the effects of a half marathon on Achilles tendon force-elongation relationship.
Eur J Appl Physiol. 2016 Dec;116(11-12):2281-2292. doi: 10.1007/s00421-016-3482-z. Epub 2016 Sep 30.
8
Assessments of Mechanical Stiffness and Relationships to Performance Determinants in Middle-Distance Runners.
Int J Sports Physiol Perform. 2017 Nov 1;12(10):1329-1334. doi: 10.1123/ijspp.2016-0594. Epub 2017 Dec 22.
9
The influence of Achilles tendon mechanical behaviour on "apparent" efficiency during running at different speeds.
Eur J Appl Physiol. 2020 Nov;120(11):2495-2505. doi: 10.1007/s00421-020-04472-9. Epub 2020 Aug 25.
10
Mechanical and neural function of triceps surae in elite racewalking.
J Appl Physiol (1985). 2016 Jul 1;121(1):101-5. doi: 10.1152/japplphysiol.00310.2016. Epub 2016 Jun 2.

引用本文的文献

2
Sex differences in elite ski mountaineering aerobic performance.
Front Sports Act Living. 2025 Feb 13;7:1534315. doi: 10.3389/fspor.2025.1534315. eCollection 2025.
3
Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations.
Sports Med. 2024 Dec;54(12):3019-3050. doi: 10.1007/s40279-024-02110-4. Epub 2024 Oct 7.
5
How do differences in Achilles' tendon moment arm lengths affect muscle-tendon dynamics and energy cost during running?
Front Sports Act Living. 2023 Apr 17;5:1125095. doi: 10.3389/fspor.2023.1125095. eCollection 2023.
6
Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost.
J Biomech. 2023 May;153:111585. doi: 10.1016/j.jbiomech.2023.111585. Epub 2023 Apr 13.
9
Effects of midsole cushioning stiffness on Achilles tendon stretch during running.
Sci Rep. 2022 Mar 9;12(1):4193. doi: 10.1038/s41598-022-07719-x.
10
Triceps Surae Muscle-Tendon Properties as Determinants of the Metabolic Cost in Trained Long-Distance Runners.
Front Physiol. 2022 Jan 4;12:767445. doi: 10.3389/fphys.2021.767445. eCollection 2021.

本文引用的文献

1
Energy cost of running and Achilles tendon stiffness in man and woman trained runners.
Physiol Rep. 2013 Dec 6;1(7):e00178. doi: 10.1002/phy2.178. eCollection 2013 Dec 1.
2
The reliability of running economy expressed as oxygen cost and energy cost in trained distance runners.
Appl Physiol Nutr Metab. 2013 Dec;38(12):1268-72. doi: 10.1139/apnm-2013-0055. Epub 2013 Jun 26.
3
Can muscle shortening alone, explain the energy cost of muscle contraction in vivo?
Eur J Appl Physiol. 2013 Sep;113(9):2313-22. doi: 10.1007/s00421-013-2665-0. Epub 2013 May 28.
4
Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans.
Eur J Appl Physiol. 2013 Jun;113(6):1605-15. doi: 10.1007/s00421-012-2585-4. Epub 2013 Jan 18.
5
Muscle-tendon interaction and EMG profiles of world class endurance runners during hopping.
Eur J Appl Physiol. 2013 Jun;113(6):1395-403. doi: 10.1007/s00421-012-2559-6. Epub 2012 Dec 11.
6
Viewpoint: On the hysteresis in the human Achilles tendon.
J Appl Physiol (1985). 2013 Feb 15;114(4):515-7. doi: 10.1152/japplphysiol.01005.2012. Epub 2012 Oct 18.
7
Changes in tendon stiffness and running economy in highly trained distance runners.
Eur J Appl Physiol. 2010 Nov;110(5):1037-46. doi: 10.1007/s00421-010-1582-8. Epub 2010 Aug 4.
8
Inferring crossbridge properties from skeletal muscle energetics.
Prog Biophys Mol Biol. 2010 Jan;102(1):53-71. doi: 10.1016/j.pbiomolbio.2009.10.003. Epub 2009 Oct 27.
9
Economy of running: beyond the measurement of oxygen uptake.
J Appl Physiol (1985). 2009 Dec;107(6):1918-22. doi: 10.1152/japplphysiol.00307.2009. Epub 2009 Oct 15.
10
Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects.
J Sci Med Sport. 2010 Jan;13(1):106-11. doi: 10.1016/j.jsams.2008.08.002. Epub 2008 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验