Rudd Jason J, Kanyuka Kostya, Hassani-Pak Keywan, Derbyshire Mark, Andongabo Ambrose, Devonshire Jean, Lysenko Artem, Saqi Mansoor, Desai Nalini M, Powers Stephen J, Hooper Juliet, Ambroso Linda, Bharti Arvind, Farmer Andrew, Hammond-Kosack Kim E, Dietrich Robert A, Courbot Mikael
Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.).
Plant Physiol. 2015 Mar;167(3):1158-85. doi: 10.1104/pp.114.255927. Epub 2015 Jan 16.
The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
半活体营养型真菌小麦黄斑叶枯病菌(Zymoseptoria tritici)会引发小麦(Triticum aestivum)的黄斑叶枯病。该病原体在小麦上繁殖时不会穿透细胞,这表明在整个病害循环过程中,真菌与植物之间会发生动态且密切的细胞间通讯。我们利用深度RNA测序和代谢组学技术,研究了小麦黄斑叶枯病菌在小麦叶片上进行无性繁殖周期时植物和病原体的生理状况。超过3000个病原体基因、7000多个小麦基因以及300多种代谢物受到差异调控。有趣的是,单个真菌染色体对整体基因表达变化的贡献并不相同。在接种叶片中检测到假定的宿主防御基因早期转录下调。在小麦黄斑叶枯病菌无症状定殖的整个过程中,几乎没有证据表明真菌从植物中获取营养,相反,它可能利用脂质和脂肪酸储存来生长。然而,在转变为坏死营养型生长和繁殖过程中,该真菌随后操纵了特定的植物碳水化合物,包括果聚糖代谢物。这种转变与茉莉酸生物合成基因表达增加以及其他植物防御反应的大规模激活同时发生。尽管功能分析表明许多编码假定次生代谢物簇和分泌效应蛋白的真菌基因在毒力方面具有重叠/冗余功能,但它们被鉴定出具有不同的感染阶段特异性表达模式。通过这项研究揭示的小麦黄斑叶枯病菌在小麦上的致病生活方式,包括由生长缓慢的细胞外且营养有限的病原体最初抑制防御,随后在繁殖过程中激活防御(过度激活),揭示了对半活体营养型植物感染概念定义的微妙修改。