Suppr超能文献

一种保守的真菌Knr4/Smi1蛋白对于维持细胞壁应激耐受性和宿主植物致病性至关重要。

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

作者信息

Kroll Erika, Bayon Carlos, Rudd Jason, Armer Victoria J, Magaji-Umashankar Anjana, Ames Ryan, Urban Martin, Brown Neil A, Hammond-Kosack Kim

机构信息

Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

Department of Life Sciences, University of Bath, Bath, Somerset, United Kingdom.

出版信息

PLoS Pathog. 2025 Jan 9;21(1):e1012769. doi: 10.1371/journal.ppat.1012769. eCollection 2025 Jan.

Abstract

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module (F12) that exhibited a significant correlation with a detoxification gene-enriched wheat module (W12). This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection that was correlated to a wheat module enriched in oxidative stress genes, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including oxidative stress tolerance, cell cycle stress tolerance, morphogenesis, growth, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of the FgKnr4 gene are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici. Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.

摘要

丝状植物病原真菌对全球粮食安全构成重大威胁,尤其是通过诸如影响谷物的镰刀菌穗腐病(FHB)和小麦黄斑叶枯病(STB)等病害。由于真菌防治面临越来越多的挑战,且出于环境考虑对杀菌剂使用的限制日益增加,因此迫切需要创新的防治策略。在此,我们通过构建一个双重加权基因共表达网络(WGCN),对禾谷镰刀菌在小麦穗中的阶段特异性感染过程进行了全面分析。值得注意的是,该网络包含一个富含霉菌毒素的真菌模块(F12),它与一个富含解毒基因的小麦模块(W12)呈现出显著相关性。这种基因表达的相关性通过定量PCR得到了验证。通过研究一个在早期无症状感染期间高表达且与富含氧化应激基因的小麦模块相关的真菌模块,我们鉴定出一个编码FgKnr4的基因,FgKnr4是一种含有Knr4/Smi1无序结构域的蛋白质。通过全面分析,我们证实了FgKnr4在各种生物学过程中的关键作用,包括氧化应激耐受性、细胞周期应激耐受性、形态发生、生长和致病性。进一步的研究证实,观察到的表型部分归因于FgKnr4通过调节MAP激酶MGV1的磷酸化参与调控真菌细胞壁完整性途径。FgKnr4基因的直系同源物广泛存在于真菌界,但在其他真核生物中不存在,这表明该蛋白质有潜力成为一个有前景的干预靶点。令人鼓舞的是,在小麦真菌病原体小麦壳针孢中缺失直系同源基因后,观察到了与ΔFgknr4相同的生长受限和毒力高度降低的表型。总体而言,这项研究证明了综合网络水平分析方法在确定对发病机制和疾病控制具有高度研究价值的基因方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac51/11717356/b980417f0ba7/ppat.1012769.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验