Quick Harrison, Groth Caroline, Banerjee Sudipto, Carlin Bradley P, Stenzel Mark R, Stewart Patricia A, Sandler Dale P, Engel Lawrence S, Kwok Richard K
Department of Statistics, University of Missouri, Columbia, Missouri 65211.
Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455.
Spat Stat. 2014 Aug 1;9:166-179. doi: 10.1016/j.spasta.2014.03.002.
This paper develops a hierarchical framework for identifying spatiotemporal patterns in data with a high degree of censoring using the gradient process. To do this, we impute censored values using a sampling-based inverse CDF method within our Markov chain Monte Carlo algorithm, thereby avoiding burdensome integration and facilitating efficient estimation of other model parameters. We illustrate use of our methodology using a simulated data example, and uncover the danger of simply substituting a space- and time-constant function of the level of detection for all missing values. We then fit our model to area measurement data of volatile organic compounds (VOC) air concentrations collected on vessels supporting the response and clean-up efforts of the oil release that occurred starting April 20, 2010. These data contained a high percentage of observations below the detectable limits of the measuring instrument. Despite this, we were still able to make some interesting discoveries, including elevated levels of VOC near the site of the oil well on June 26th. Using the results from this preliminary analysis, we hope to inform future research on the study, including the use of gradient methods for assigning workers to exposure categories.
本文开发了一种分层框架,用于使用梯度过程识别具有高度删失的数据中的时空模式。为此,我们在马尔可夫链蒙特卡罗算法中使用基于抽样的逆累积分布函数方法来插补删失值,从而避免繁琐的积分,并便于有效估计其他模型参数。我们通过一个模拟数据示例来说明我们方法的使用,并揭示了简单地用检测水平的时空常数函数替代所有缺失值的危险性。然后,我们将模型应用于2010年4月20日开始的石油泄漏事件响应和清理工作的船只上收集的挥发性有机化合物(VOC)空气浓度的区域测量数据。这些数据中低于测量仪器检测限的观测值占比很高。尽管如此,我们仍然能够做出一些有趣的发现,包括6月26日油井附近VOC水平升高。利用这一初步分析的结果,我们希望为该研究的未来研究提供信息,包括使用梯度方法将工人分配到暴露类别。