Suppr超能文献

使用实时区域 VOC 测量来估算参与深海地平线石油泄漏的工人的总碳氢化合物暴露量。

Using Real-Time Area VOC Measurements to Estimate Total Hydrocarbons Exposures to Workers Involved in the Deepwater Horizon Oil Spill.

机构信息

Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205, USA.

Department of Epidemiology and Biostatistics, WVU School of Public Health, West Virginia University, One Medical Center Drive, Morgantown, WV 26506, USA.

出版信息

Ann Work Expo Health. 2022 Apr 7;66(Suppl 1):i156-i171. doi: 10.1093/annweh/wxab066.

Abstract

UNLABELLED

Even though the Deepwater Horizon oil spill response and clean-up (OSRC) had one of the largest exposure monitoring efforts of any oil spill, a number of exposure groups did not have sufficient personal data available or there were gaps in days measured to adequately characterize exposures for the GuLF STUDY, an epidemiologic study investigating the health of the OSRC workers. Area measurements were available from real-time air monitoring instruments and used to supplement the personal exposure measurements.

OBJECTIVES

The objective was to present a method that used real-time volatile organic compounds (VOCs) area measurements transformed to daily total hydrocarbons (THC) time-weighted averages (TWAs) to supplement THC personal full-shift measurements collected using passive charcoal badges. A second objective was to develop exposure statistics using these data for workers on vessels piloting remotely operated vehicle (ROV) vessels and other marine vessels (MVs) not at the job title level, but at the vessel level.

METHODS

From hourly vessel averages derived from ~26 million real-time VOC measurements, we estimated full-shift VOC TWAs. Then, we determined the relationship between these TWAs and corresponding full-shift THC personal measurements taken on the same vessel-day. We used this relationship to convert the full-shift VOC measurements to full-shift 'THC' TWA estimates when no personal THC measurements existed on a vessel-day. We then calculated arithmetic means (AMs) and other statistics of THC exposures for each vessel.

RESULTS

The VOC-derived estimates substantially supplemented the THC personal measurements, with the number of vessel-days for which we have exposure estimates increasing by ~60%. The estimates of the AMs are some of the highest observed in the GuLF STUDY. As expected, the AMs decreased over time, consistent with our findings on other vessels.

CONCLUSIONS

Despite the inherent limitations of using real-time area measurements, we were able to develop additional daily observations of personal THC exposures for workers on the ROV vessels and other MVs over time. The estimates likely resulted in more representative estimates of the AMs in the GuLF STUDY. The method used here can be applied in other occupational settings and industries for personal exposure estimation where large amounts of area measurements and more limited numbers of personal measurements are available.

摘要

未加标签

尽管深水地平线石油泄漏应对和清理 (OSRC) 进行了有史以来最大规模的暴露监测工作之一,但仍有一些暴露组没有足够的个人数据,或者在为 Gulf STUDY 进行的流行病学研究中,对暴露情况的测量存在差距,该研究调查了 OSRC 工人的健康状况。区域测量值可从实时空气监测仪器中获得,并用于补充个人暴露测量值。

目的

目的是提出一种方法,该方法使用实时挥发性有机化合物 (VOC) 区域测量值转换为每日总碳氢化合物 (THC) 时间加权平均值 (TWA),以补充使用被动活性炭徽章收集的 THC 全班次个人测量值。第二个目的是为使用遥控潜水器 (ROV) 船只和其他非职位级别的海洋船只 (MV) 的船只驾驶员开发这些数据的暴露统计数据。

方法

从大约 2600 万次实时 VOC 测量中得出的每小时船只平均值,我们估算了全班次 VOC TWA。然后,我们确定了这些 TWA 与同一船只日进行的相应全班次 THC 个人测量值之间的关系。当一艘船只日没有个人 THC 测量值时,我们使用这种关系将全班次 VOC 测量值转换为全班次“THC”TWA 估计值。然后,我们计算了每个船只的 THC 暴露算术平均值 (AM) 和其他统计数据。

结果

VOC 衍生的估计值大大补充了 THC 个人测量值,有暴露估计值的船只日数增加了约 60%。在 Gulf STUDY 中观察到的 AM 估计值是最高的。正如预期的那样,随着时间的推移,AM 值下降,这与我们在其他船只上的发现一致。

结论

尽管使用实时区域测量值存在固有限制,但我们能够随着时间的推移为 ROV 船只和其他 MV 上的工人开发更多的个人 THC 暴露日观察值。这些估计值可能导致 Gulf STUDY 中的 AM 更具代表性。此处使用的方法可应用于其他职业环境和行业,用于个人暴露估计,其中大量的区域测量值和更有限的个人测量值可用。

相似文献

引用本文的文献

7
Exposure Group Development in Support of the NIEHS GuLF Study.支持 NIEHS 海湾研究的暴露组开发。
Ann Work Expo Health. 2022 Apr 7;66(Suppl 1):i23-i55. doi: 10.1093/annweh/wxab093.

本文引用的文献

3
Exposure Group Development in Support of the NIEHS GuLF Study.支持 NIEHS 海湾研究的暴露组开发。
Ann Work Expo Health. 2022 Apr 7;66(Suppl 1):i23-i55. doi: 10.1093/annweh/wxab093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验