Suppr超能文献

基于血清生化和机械性疼痛生物标志物识别不同程度疼痛性膝骨关节炎患者的特定特征:一种基于聚类分析的诊断方法。

Identifying specific profiles in patients with different degrees of painful knee osteoarthritis based on serological biochemical and mechanistic pain biomarkers: a diagnostic approach based on cluster analysis.

作者信息

Egsgaard Line Lindhardt, Eskehave Thomas Navndrup, Bay-Jensen Anne C, Hoeck Hans Christian, Arendt-Nielsen Lars

机构信息

Center for Sensory Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, School of Medicine, Aalborg University, Aalborg East, Denmark Center for Clinical and Basic Research (CCBR) and C4Pain, Aalborg, Denmark Nordic Bioscience, Herlev, Denmark.

出版信息

Pain. 2015 Jan;156(1):96-107. doi: 10.1016/j.pain.0000000000000011.

Abstract

Biochemical and pain biomarkers can be applied to patients with painful osteoarthritis profiles and may provide more details compared with conventional clinical tools. The aim of this study was to identify an optimal combination of biochemical and pain biomarkers for classification of patients with different degrees of knee pain and joint damage. Such profiling may provide new diagnostic and therapeutic options. A total of 216 patients with different degrees of knee pain (maximal pain during the last 24 hours rated on a visual analog scale [VAS]) (VAS 0-100) and 64 controls (VAS 0-9) were recruited. Patients were separated into 3 groups: VAS 10 to 39 (N = 81), VAS 40 to 69 (N = 70), and VAS 70 to 100 (N = 65). Pressure pain thresholds, temporal summation to pressure stimuli, and conditioning pain modulation were measured from the peripatellar and extrasegmental sites. Biochemical markers indicative for autoinflammation and immunity (VICM, CRP, and CRPM), synovial inflammation (CIIIM), cartilage loss (CIIM), and bone degradation (CIM) were analyzed. WOMAC, Lequesne, and pain catastrophizing scores were collected. Principal component analysis was applied to select the optimal variable subset, and cluster analysis was applied to this subset to create distinctly different knee pain profiles. Four distinct knee pain profiles were identified: profile A (N = 27), profile B (N = 59), profile C (N = 85), and profile D (N = 41). Each knee pain profile had a unique combination of biochemical markers, pain biomarkers, physical impairments, and psychological factors that may provide the basis for mechanism-based diagnosis, individualized treatment, and selection of patients for clinical trials evaluating analgesic compounds. These results introduce a new profiling for knee OA and should be regarded as preliminary.

摘要

生化和疼痛生物标志物可应用于具有疼痛性骨关节炎特征的患者,与传统临床工具相比,可能会提供更多细节。本研究的目的是确定生化和疼痛生物标志物的最佳组合,用于对不同程度膝关节疼痛和关节损伤的患者进行分类。这种分析可能会提供新的诊断和治疗选择。共招募了216例不同程度膝关节疼痛(根据视觉模拟量表[VAS]对过去24小时内的最大疼痛进行评分)(VAS 0 - 100)的患者和64例对照(VAS 0 - 9)。患者被分为3组:VAS 10至39(N = 81)、VAS 40至69(N = 70)和VAS 70至100(N = 65)。从髌周和节段外部位测量压力疼痛阈值、对压力刺激的时间总和以及条件性疼痛调制。分析了指示自身炎症和免疫(VICM、CRP和CRPM)、滑膜炎症(CIIIM)、软骨损失(CIIM)和骨降解(CIM)的生化标志物。收集了WOMAC、Lequesne和疼痛灾难化评分。应用主成分分析选择最佳变量子集,并对该子集应用聚类分析以创建明显不同的膝关节疼痛特征。确定了四种不同的膝关节疼痛特征:特征A(N = 27)、特征B(N = 59)、特征C(N = 85)和特征D(N = 41)。每种膝关节疼痛特征都有生化标志物、疼痛生物标志物、身体损伤和心理因素的独特组合,这可能为基于机制的诊断、个体化治疗以及选择参与评估镇痛化合物的临床试验的患者提供依据。这些结果引入了一种新的膝关节骨关节炎分析方法,应视为初步结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验