Suppr超能文献

将个人单核苷酸多态性 (SNP) 数据纳入国家电子健康记录进行疾病风险评估,第 1 部分:需求概述。

Incorporation of personal single nucleotide polymorphism (SNP) data into a national level electronic health record for disease risk assessment, part 1: an overview of requirements.

机构信息

Informatics Institute, Department of Health Informatics, Middle East Technical University, Ankara, Turkey.

出版信息

JMIR Med Inform. 2014 Jul 24;2(2):e15. doi: 10.2196/medinform.3169.

Abstract

BACKGROUND

Personalized medicine approaches provide opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical records (EMRs)/electronic health records (EHRs). Today, various central EHR infrastructures have been constituted in many countries of the world including Turkey.

OBJECTIVE

The objective of this study was to concentrate on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluate the performance of various predictive models for prostate cancer cases. We present our work as a miniseries containing three parts: (1) an overview of requirements, (2) the incorporation of SNP into the NHIS-T, and (3) an evaluation of SNP incorporated NHIS-T for prostate cancer.

METHODS

For the first article of this miniseries, the scientific literature is reviewed and the requirements of SNP data integration into EMRs/EHRs are extracted and presented.

RESULTS

In the literature, basic requirements of genomic-enabled EMRs/EHRs are listed as incorporating genotype data and its clinical interpretation into EMRs/EHRs, developing accurate and accessible clinicogenomic interpretation resources (knowledge bases), interpreting and reinterpreting of variant data, and immersing of clinicogenomic information into the medical decision processes. In this section, we have analyzed these requirements under the subtitles of terminology standards, interoperability standards, clinicogenomic knowledge bases, defining clinical significance, and clinicogenomic decision support.

CONCLUSIONS

In order to integrate structured genotype and phenotype data into any system, there is a need to determine data components, terminology standards, and identifiers of clinicogenomic information. Also, we need to determine interoperability standards to share information between different information systems of stakeholders, and develop decision support capability to interpret genomic variations based on the knowledge bases via different assessment approaches.

摘要

背景

个性化医疗方法为预测性和预防性医学提供了机会。利用基因组、临床、环境和行为数据,可以对个体健康进行跟踪和管理。将这种个性化方法融入常规实践的一种多产方式是将基因组变异的临床解释整合到电子病历(EMR)/电子健康记录(EHR)中。如今,世界上许多国家包括土耳其都已经构建了各种中央 EHR 基础设施。

目的

本研究的目的是专注于将个人单核苷酸多态性(SNP)数据纳入土耳其国家健康信息系统(NHIS-T)进行疾病风险评估,并评估各种前列腺癌病例预测模型的性能。我们将工作分为三个部分呈现:(1)概述要求,(2)将 SNP 纳入 NHIS-T,(3)评估纳入 SNP 的 NHIS-T 用于前列腺癌。

方法

本系列文章的第一篇综述了科学文献,并提取和呈现了将 SNP 数据集成到 EMR/EHR 中的要求。

结果

在文献中,列出了基因组支持的 EMR/EHR 的基本要求,即将基因型数据及其临床解释纳入 EMR/EHR、开发准确且易于访问的临床基因组解释资源(知识库)、解释和重新解释变体数据,以及将临床基因组信息融入医疗决策过程。在本节中,我们在术语标准、互操作性标准、临床基因组知识库、定义临床意义和临床基因组决策支持等副标题下分析了这些要求。

结论

为了将结构化基因型和表型数据集成到任何系统中,需要确定数据组件、术语标准和临床基因组信息的标识符。还需要确定互操作性标准,以在不同利益相关者的信息系统之间共享信息,并开发决策支持能力,以便通过不同评估方法基于知识库解释基因组变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21ca/4288081/defc00179134/medinform_v2i2e15_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验